Synthesis of Transition Metal Oxide Based MgO Nanocomposites by a Simple Precursor Approach

Article Preview

Abstract:

MgO based nanocomposites possess a wide range of applications in various catalytic reactions. Transition metal oxide based MgO nanocomposites are expected to be useful in spintronics. MgO has been chosen due to its less interaction with magnetic nanoparticles and also it provides stability to the magnetic nanoparticles. In the present study, MgO–Co3O4 and MgO–NiO nanocomposites have been synthesized by a simple precursor approach. Firstly, magnesium oxychloride precursors were prepared using aqueous solutions of magnesium chloride, cobalt chloride (or nickel chloride) and nanocrystalline MgO which on calcination at 500°C led to MgO–Co3O4 and MgO–NiO nanocomposites. The nanocomposites were characterized by XRD, FE-SEM, EDXA, TEM and magnetic measurements. The XRD results indicate the formation of Co3O4 and NiO along with MgO on calcination of the precursors. The SEM and TEM images indicate the presence of MgO particles along with transition metal oxide nanoparticles. Magnetic measurements of both the nanocomposites (M-H) indicate superparamagnetic behavior at 5 K.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

169-173

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I.V. Mishakov, A.F. Bedilo., R.M. Richards, V.V. Chesnokov, A.M. Volodin, V.I. Zaikovskii, R.A. Buyanov, K.J. Klabunde, J. Catal. 206 (2002) 40-48.

DOI: 10.1006/jcat.2001.3474

Google Scholar

[2] T. Matsuda, J. Tanabe, N. Hayashi, Y. Sasaki, H. Miura, K. Sugiyama, Bull. Chem. Soc. Jpn. 55 (1982) 990-994.

Google Scholar

[3] G. Liu, J. Wang, Water Environ. Res. 84 (2012) 569-576.

Google Scholar

[4] S. Shen, P.S. Chow, F. Chen, R.B.H. Tan, Chem. Pharm. Bull. 55 (2007) 985-991.

Google Scholar

[5] F. Haraguchi, K.I. Inoue, N. Toshima, S. Kobayashi, K. Takatoh, Jpn. J. Appl. Phys. 46 (2007) 796-797.

Google Scholar

[6] S.W. Liu, J. Weaver, Z. Yuan, W. Donner, C.L. Chen, J.C. Jiang, E.I. Meletis, W. Chang, S.W. Kirchoefer, J. Horwitz, A. Bhalla, Appl. Phys. Lett. 87 (2005) 142905/1-3.

DOI: 10.1063/1.2081131

Google Scholar

[7] M.B. Gawande, P.S. Branco, K. Parghi, J.J. Shrikhande, R.K. Pandey, C.A.A. Ghumman, N. Bundaleski, O.M.N.D. Teodoro, R.V. Jayaram, Catal. Sci. Technol. 1 (2011) 1653–1664.

DOI: 10.1039/c1cy00259g

Google Scholar

[8] J. Bandara, C.C. Hadapangoda, W.G. Jayasekera, Appl. Catal. B: Environ. 50 (2004) 83–88.

Google Scholar

[9] N.S. Kal'chuk, P.E. Strizhak, G.R. Kosmambetova, O.Z. Didenko, Theor. Exp. Chem. 44 (2008) 172-177.

Google Scholar

[10] X. Bokhimi, J.L. Boldu , E. Munoz, O. Novaro, T. Lopez, J. Hernandez, R. Gomez, A. Garcia-Ruiz, Chem. Mater. 11 (1999) 2716-2721.

Google Scholar

[11] A. Aslani, M.R. Arefi, A. Babapoor, A. Amiri, K. Beyki-Shuraki, Appl. Surf. Sci. 257 (2011) 4885–4889.

DOI: 10.1016/j.apsusc.2010.12.135

Google Scholar

[12] A. Azhari, M. Sharif Sh., F. Golestanifard, A. Saberi, Mater. Chem. Phys. 124 (2010) 658–663.

Google Scholar

[13] E.K. Akdogan, I. Savkliyildiz, B. Berke, Z. Zhong, L. Wang, D. Weidner, M.C. Croft, T. Tsakalakos, J. Appl. Phys. 111 (2012) 053506/1-7.

Google Scholar

[14] L. Chen, X. Sun, Y. Liu, Y. Li, Appl. Catal. A: Gen. 265 (2004) 123–128.

Google Scholar

[15] K. Oka, T. Yanagida, K. Nagashima, H. Tanaka, S. Seki, Y. Honsho, M. Ishimaru, A. Hirata, T. Kawai, Appl. Phys. Lett. 95 (2009) 133110/1-3.

DOI: 10.1063/1.3237176

Google Scholar

[16] T. Tsoncheva, L. Ivanova, C. Minchev, M. Froba, J. Colloid Interface Sci. 333 (2009) 277–284.

Google Scholar

[17] Z. Yang, Y. Zhang, X. Wang, Y. Zhang, X. Lu, W. Ding, Energy Fuels 24 (2010) 785–788.

Google Scholar

[18] C. Mahendiran, T. Maiyalagan, K. Scott, A. Gedanken, Mater. Chem. Phys. 128 (2011) 341–347.

Google Scholar

[19] M.P. Proenca, C.T. Sousa, A.M. Pereira, P.B. Tavares, J. Ventura, M. Vazquez, J.P. Araujo, Phys. Chem. Chem. Phys. 13 (2011) 9561–9567.

DOI: 10.1039/c1cp00036e

Google Scholar

[20] W. Chen, C. Chen, L. Guo, J. Appl. Phys. 108 (2010) 073907/1-5.

Google Scholar

[21] J.V. Stark, D.G. Park, I. Lagadic, K.J. Klabunde, Chem. Mater. 8 (1996) 1904-1912

Google Scholar

[22] P. Jeevanandam, R.S. Mulukutla, Z. Yang, H. Kwen, K.J. Klabunde, Chem. Mater. 19 (2007) 5395-5403.

Google Scholar

[23] L. Neel, Low Temperature Physics, C. Dewitt, B. Dreyfus and P. D. de Gennes (Eds.), Gordon and Beach, New York, 1962, p.413.

Google Scholar

[24] L. He, C. Chen, N. Wang, W. Zhou, L. Guo, J. Appl. Phys. 102 (2007) 103911/1-4.

Google Scholar

[25] W.L. Roth, Phys. Chem. Solids 25 (1964) 1-10.

Google Scholar

[26] K. Karthik, G.K. Selvan, M. Kanagaraj, S. Arumugam, N.V. Jaya, J. Alloys Compd. 509 (2011) 181–184.

Google Scholar

[27] E. Winkler, R.D. Zysler, M.V. Mansilla, D. Fiorani, Phys. Rev. B 72 (2005) 132409/1-4.

Google Scholar