Synthesis of Transition Metal Oxide Based MgO Nanocomposites by a Simple Precursor Approach

Abstract:

Article Preview

MgO based nanocomposites possess a wide range of applications in various catalytic reactions. Transition metal oxide based MgO nanocomposites are expected to be useful in spintronics. MgO has been chosen due to its less interaction with magnetic nanoparticles and also it provides stability to the magnetic nanoparticles. In the present study, MgO–Co3O4 and MgO–NiO nanocomposites have been synthesized by a simple precursor approach. Firstly, magnesium oxychloride precursors were prepared using aqueous solutions of magnesium chloride, cobalt chloride (or nickel chloride) and nanocrystalline MgO which on calcination at 500°C led to MgO–Co3O4 and MgO–NiO nanocomposites. The nanocomposites were characterized by XRD, FE-SEM, EDXA, TEM and magnetic measurements. The XRD results indicate the formation of Co3O4 and NiO along with MgO on calcination of the precursors. The SEM and TEM images indicate the presence of MgO particles along with transition metal oxide nanoparticles. Magnetic measurements of both the nanocomposites (M-H) indicate superparamagnetic behavior at 5 K.

Info:

Periodical:

Edited by:

B.S.S. Daniel and G.P. Chaudhari

Pages:

169-173

Citation:

G. Sharma and P. Jeevanandam, "Synthesis of Transition Metal Oxide Based MgO Nanocomposites by a Simple Precursor Approach", Advanced Materials Research, Vol. 585, pp. 169-173, 2012

Online since:

November 2012

Export:

Price:

$38.00

[1] I.V. Mishakov, A.F. Bedilo., R.M. Richards, V.V. Chesnokov, A.M. Volodin, V.I. Zaikovskii, R.A. Buyanov, K.J. Klabunde, J. Catal. 206 (2002) 40-48.

DOI: https://doi.org/10.1006/jcat.2001.3474

[2] T. Matsuda, J. Tanabe, N. Hayashi, Y. Sasaki, H. Miura, K. Sugiyama, Bull. Chem. Soc. Jpn. 55 (1982) 990-994.

[3] G. Liu, J. Wang, Water Environ. Res. 84 (2012) 569-576.

[4] S. Shen, P.S. Chow, F. Chen, R.B.H. Tan, Chem. Pharm. Bull. 55 (2007) 985-991.

[5] F. Haraguchi, K.I. Inoue, N. Toshima, S. Kobayashi, K. Takatoh, Jpn. J. Appl. Phys. 46 (2007) 796-797.

[6] S.W. Liu, J. Weaver, Z. Yuan, W. Donner, C.L. Chen, J.C. Jiang, E.I. Meletis, W. Chang, S.W. Kirchoefer, J. Horwitz, A. Bhalla, Appl. Phys. Lett. 87 (2005) 142905/1-3.

DOI: https://doi.org/10.1063/1.2081131

[7] M.B. Gawande, P.S. Branco, K. Parghi, J.J. Shrikhande, R.K. Pandey, C.A.A. Ghumman, N. Bundaleski, O.M.N.D. Teodoro, R.V. Jayaram, Catal. Sci. Technol. 1 (2011) 1653–1664.

DOI: https://doi.org/10.1039/c1cy00259g

[8] J. Bandara, C.C. Hadapangoda, W.G. Jayasekera, Appl. Catal. B: Environ. 50 (2004) 83–88.

[9] N.S. Kal'chuk, P.E. Strizhak, G.R. Kosmambetova, O.Z. Didenko, Theor. Exp. Chem. 44 (2008) 172-177.

[10] X. Bokhimi, J.L. Boldu , E. Munoz, O. Novaro, T. Lopez, J. Hernandez, R. Gomez, A. Garcia-Ruiz, Chem. Mater. 11 (1999) 2716-2721.

DOI: https://doi.org/10.1021/cm9900812

[11] A. Aslani, M.R. Arefi, A. Babapoor, A. Amiri, K. Beyki-Shuraki, Appl. Surf. Sci. 257 (2011) 4885–4889.

[12] A. Azhari, M. Sharif Sh., F. Golestanifard, A. Saberi, Mater. Chem. Phys. 124 (2010) 658–663.

[13] E.K. Akdogan, I. Savkliyildiz, B. Berke, Z. Zhong, L. Wang, D. Weidner, M.C. Croft, T. Tsakalakos, J. Appl. Phys. 111 (2012) 053506/1-7.

[14] L. Chen, X. Sun, Y. Liu, Y. Li, Appl. Catal. A: Gen. 265 (2004) 123–128.

[15] K. Oka, T. Yanagida, K. Nagashima, H. Tanaka, S. Seki, Y. Honsho, M. Ishimaru, A. Hirata, T. Kawai, Appl. Phys. Lett. 95 (2009) 133110/1-3.

DOI: https://doi.org/10.1063/1.3237176

[16] T. Tsoncheva, L. Ivanova, C. Minchev, M. Froba, J. Colloid Interface Sci. 333 (2009) 277–284.

[17] Z. Yang, Y. Zhang, X. Wang, Y. Zhang, X. Lu, W. Ding, Energy Fuels 24 (2010) 785–788.

[18] C. Mahendiran, T. Maiyalagan, K. Scott, A. Gedanken, Mater. Chem. Phys. 128 (2011) 341–347.

[19] M.P. Proenca, C.T. Sousa, A.M. Pereira, P.B. Tavares, J. Ventura, M. Vazquez, J.P. Araujo, Phys. Chem. Chem. Phys. 13 (2011) 9561–9567.

[20] W. Chen, C. Chen, L. Guo, J. Appl. Phys. 108 (2010) 073907/1-5.

[21] J.V. Stark, D.G. Park, I. Lagadic, K.J. Klabunde, Chem. Mater. 8 (1996) 1904-(1912).

[22] P. Jeevanandam, R.S. Mulukutla, Z. Yang, H. Kwen, K.J. Klabunde, Chem. Mater. 19 (2007) 5395-5403.

[23] L. Neel, Low Temperature Physics, C. Dewitt, B. Dreyfus and P. D. de Gennes (Eds. ), Gordon and Beach, New York, 1962, p.413.

[24] L. He, C. Chen, N. Wang, W. Zhou, L. Guo, J. Appl. Phys. 102 (2007) 103911/1-4.

[25] W.L. Roth, Phys. Chem. Solids 25 (1964) 1-10.

[26] K. Karthik, G.K. Selvan, M. Kanagaraj, S. Arumugam, N.V. Jaya, J. Alloys Compd. 509 (2011) 181–184.

[27] E. Winkler, R.D. Zysler, M.V. Mansilla, D. Fiorani, Phys. Rev. B 72 (2005) 132409/1-4.