The Mechanism of Internal Tide Generation over Weak Topography

Article Preview

Abstract:

Here the process of internal tide generation over idealized (sinusoidal) topography was investigated using numerical techniques, in which the barotropic-to-baroclinic energy conversion was discussed. The result shows that when the wavenumber of the sinusoidal topography, ktopo, is equal to the horizontal wavenumber of the m-th baroclinic mode km, the conversion from the barotropic tide to the m-th baroclinic mode is enhanced with the increase of topography length; When the wavenumber of the sinusoidal topography is not equal to horizontal wavenumbers of any baroclinic modes, ktopo≠km (m=1,2,...), conversion from the barotropic energy to baroclinic modes is decreased with the increase of topography length. Furthermore, it shows that in resonance case, the phase of the perturbation pressure gradually agrees with the phase of the truncated sinusoidal topography, and the conversion rate is always positive over the topography, thus the baroclinic mode which matches with the wavenumber of the sinusoidal topography persists in absorbing energy from the barotropic tide, and the conversion rate is increased.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 588-589)

Pages:

1972-1978

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. L. Polzin, J. M. Toole, J. R. LedwellR. W. Schmitt. Spatial Variability of Turbulent Mixing in the Abyssal Ocean. Science. 1997. 276. (5309). 93 -96.

DOI: 10.1126/science.276.5309.93

Google Scholar

[2] Walter Munk, Carl Wunsch. Abyssal recipes II: energetics of tidal and wind mixing. Deep Sea Research Part I: Oceanographic Research Papers. 1998. 45. (12). 1977-(2010).

DOI: 10.1016/s0967-0637(98)00070-3

Google Scholar

[3] J. R. Ledwell, E. T. Montgomery, K. L. Polzin, L. C. St. Laurent, R. W. SchmittJ. M. Toole. Evidence for enhanced mixing over rough topography in the abyssal ocean. 2000. 403. (6766). 179-182.

DOI: 10.1038/35003164

Google Scholar

[4] N. J. Balmforth, G. R. IerleyW. R. Young. Tidal Conversion by Subcritical Topography. Journal of Physical Oceanography. 2002. 32. (10). 2900-2914.

DOI: 10.1175/1520-0485(2002)032<2900:tcbst>2.0.co;2

Google Scholar

[5] Stefan G. Llewellyn SmithW. R. Young. Conversion of the Barotropic Tide. Journal of Physical Oceanography. 2002. 32. 1554~1566.

DOI: 10.1175/1520-0485(2002)032<1554:cotbt>2.0.co;2

Google Scholar

[6] Louis St. Laurent, Steven Stringer, Chris GarrettDominique Perrault-Joncas. The generation of internal tides at abrupt topography. Deep Sea Research Part I: Oceanographic Research Papers. 2003. 50. (8). 987-1003.

DOI: 10.1016/s0967-0637(03)00096-7

Google Scholar

[7] Sonya Legg, Karin M. H. Huijts. Preliminary simulations of internal waves and mixing generated by finite amplitude tidal flow over isolated topography. Deep Sea Research Part II: Topical Studies in Oceanography. 2006. 53. (1-2). 140-156.

DOI: 10.1016/j.dsr2.2005.09.014

Google Scholar

[8] S. Khatiwala. Generation of internal tides in an ocean of finite depth: analytical and numerical calculations. Deep-Sea Research I. 2003. 50. 3–21.

DOI: 10.1016/s0967-0637(02)00132-2

Google Scholar

[9] S. A. Thorpe. Internal Wave Reflection and Scatter from Sloping Rough Topography. Journal of Physical Oceanography. 2001. 31. (2). 537-553.

DOI: 10.1175/1520-0485(2001)031<0537:iwrasf>2.0.co;2

Google Scholar

[10] Chris Garrett, Eric Kunze. Internal Tide Generation in the Deep Ocean. Annual Review of Fluid Mechanics. 2007. 39. (1). 57-87.

DOI: 10.1146/annurev.fluid.39.050905.110227

Google Scholar

[11] Maxim Nikurashin, Raffaele Ferrari. Radiation and Dissipation of Internal Waves Generated by Geostrophic Motions Impinging on Small-Scale Topography: Theory. Journal of Physical Oceanography. 2009. 40. (5). 1055-1074.

DOI: 10.1175/2009jpo4199.1

Google Scholar

[12] Sonya Legg. Internal Tides Generated on a Corrugated Continental Slope. Part I: Cross-Slope Barotropic Forcing*. Journal of Physical Oceanography. 2004. 34. (1). 156-173.

DOI: 10.1175/1520-0485(2004)034<0156:itgoac>2.0.co;2

Google Scholar

[13] John Marshall, Alistair Adcroft, Chris Hill, Lev PerelmanCurt Heisey. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. 1997. 102. (C3). 5753-5766.

DOI: 10.1029/96jc02775

Google Scholar

[14] Alistair Adcroft, Chris HillJohn Marshall. Representation of Topography by Shaved Cells in a Height Coordinate Ocean Model. Monthly Weather Review. 1997. 125. (9). 2293-2315.

DOI: 10.1175/1520-0493(1997)125<2293:rotbsc>2.0.co;2

Google Scholar

[15] Z. Zhang, O. B. FringerS. R. Ramp. Three-dimensional, nonhydrostatic numerical simulation of nonlinear internal wave generation and propagation in the South China Sea. J. Geophys. Res. 2011. 116. (C5). C05022.

DOI: 10.1029/2010jc006424

Google Scholar

[16] Jr. T. H. Bell. Topographically Generated Internal Waves in the Open Ocean. J. Geophys. Res. 1975. 80. (3). 320-327.

DOI: 10.1029/jc080i003p00320

Google Scholar

[17] M. C. Buijsman, Y. KanarskaJ. C. McWilliams. On the generation and evolution of nonlinear internal waves in the South China Sea. J. Geophys. Res. 2010. 115. (C2). C02012.

DOI: 10.1029/2009jc005275

Google Scholar