The Mechanism of Internal Tide Generation over Weak Topography

Abstract:

Article Preview

Here the process of internal tide generation over idealized (sinusoidal) topography was investigated using numerical techniques, in which the barotropic-to-baroclinic energy conversion was discussed. The result shows that when the wavenumber of the sinusoidal topography, ktopo, is equal to the horizontal wavenumber of the m-th baroclinic mode km, the conversion from the barotropic tide to the m-th baroclinic mode is enhanced with the increase of topography length; When the wavenumber of the sinusoidal topography is not equal to horizontal wavenumbers of any baroclinic modes, ktopo≠km (m=1,2,...), conversion from the barotropic energy to baroclinic modes is decreased with the increase of topography length. Furthermore, it shows that in resonance case, the phase of the perturbation pressure gradually agrees with the phase of the truncated sinusoidal topography, and the conversion rate is always positive over the topography, thus the baroclinic mode which matches with the wavenumber of the sinusoidal topography persists in absorbing energy from the barotropic tide, and the conversion rate is increased.

Info:

Periodical:

Advanced Materials Research (Volumes 588-589)

Edited by:

Lawrence Lim

Pages:

1972-1978

Citation:

L. D. Wu and C. B. Miao, "The Mechanism of Internal Tide Generation over Weak Topography", Advanced Materials Research, Vols. 588-589, pp. 1972-1978, 2012

Online since:

November 2012

Export:

Price:

$38.00

[1] K. L. Polzin, J. M. Toole, J. R. LedwellR. W. Schmitt. Spatial Variability of Turbulent Mixing in the Abyssal Ocean. Science. 1997. 276. (5309). 93 -96.

DOI: https://doi.org/10.1126/science.276.5309.93

[2] Walter Munk, Carl Wunsch. Abyssal recipes II: energetics of tidal and wind mixing. Deep Sea Research Part I: Oceanographic Research Papers. 1998. 45. (12). 1977-(2010).

DOI: https://doi.org/10.1016/s0967-0637(98)00070-3

[3] J. R. Ledwell, E. T. Montgomery, K. L. Polzin, L. C. St. Laurent, R. W. SchmittJ. M. Toole. Evidence for enhanced mixing over rough topography in the abyssal ocean. 2000. 403. (6766). 179-182.

DOI: https://doi.org/10.1038/35003164

[4] N. J. Balmforth, G. R. IerleyW. R. Young. Tidal Conversion by Subcritical Topography. Journal of Physical Oceanography. 2002. 32. (10). 2900-2914.

[5] Stefan G. Llewellyn SmithW. R. Young. Conversion of the Barotropic Tide. Journal of Physical Oceanography. 2002. 32. 1554~1566.

[6] Louis St. Laurent, Steven Stringer, Chris GarrettDominique Perrault-Joncas. The generation of internal tides at abrupt topography. Deep Sea Research Part I: Oceanographic Research Papers. 2003. 50. (8). 987-1003.

DOI: https://doi.org/10.1016/s0967-0637(03)00096-7

[7] Sonya Legg, Karin M. H. Huijts. Preliminary simulations of internal waves and mixing generated by finite amplitude tidal flow over isolated topography. Deep Sea Research Part II: Topical Studies in Oceanography. 2006. 53. (1-2). 140-156.

DOI: https://doi.org/10.1016/j.dsr2.2005.09.014

[8] S. Khatiwala. Generation of internal tides in an ocean of finite depth: analytical and numerical calculations. Deep-Sea Research I. 2003. 50. 3–21.

DOI: https://doi.org/10.1016/s0967-0637(02)00132-2

[9] S. A. Thorpe. Internal Wave Reflection and Scatter from Sloping Rough Topography. Journal of Physical Oceanography. 2001. 31. (2). 537-553.

DOI: https://doi.org/10.1175/1520-0485(2001)031<0537:iwrasf>2.0.co;2

[10] Chris Garrett, Eric Kunze. Internal Tide Generation in the Deep Ocean. Annual Review of Fluid Mechanics. 2007. 39. (1). 57-87.

DOI: https://doi.org/10.1146/annurev.fluid.39.050905.110227

[11] Maxim Nikurashin, Raffaele Ferrari. Radiation and Dissipation of Internal Waves Generated by Geostrophic Motions Impinging on Small-Scale Topography: Theory. Journal of Physical Oceanography. 2009. 40. (5). 1055-1074.

DOI: https://doi.org/10.1175/2009jpo4199.1

[12] Sonya Legg. Internal Tides Generated on a Corrugated Continental Slope. Part I: Cross-Slope Barotropic Forcing*. Journal of Physical Oceanography. 2004. 34. (1). 156-173.

DOI: https://doi.org/10.1175/1520-0485(2004)034<0156:itgoac>2.0.co;2

[13] John Marshall, Alistair Adcroft, Chris Hill, Lev PerelmanCurt Heisey. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. 1997. 102. (C3). 5753-5766.

DOI: https://doi.org/10.1029/96jc02775

[14] Alistair Adcroft, Chris HillJohn Marshall. Representation of Topography by Shaved Cells in a Height Coordinate Ocean Model. Monthly Weather Review. 1997. 125. (9). 2293-2315.

DOI: https://doi.org/10.1175/1520-0493(1997)125<2293:rotbsc>2.0.co;2

[15] Z. Zhang, O. B. FringerS. R. Ramp. Three-dimensional, nonhydrostatic numerical simulation of nonlinear internal wave generation and propagation in the South China Sea. J. Geophys. Res. 2011. 116. (C5). C05022.

DOI: https://doi.org/10.1029/2010jc006424

[16] Jr. T. H. Bell. Topographically Generated Internal Waves in the Open Ocean. J. Geophys. Res. 1975. 80. (3). 320-327.

DOI: https://doi.org/10.1029/jc080i003p00320

[17] M. C. Buijsman, Y. KanarskaJ. C. McWilliams. On the generation and evolution of nonlinear internal waves in the South China Sea. J. Geophys. Res. 2010. 115. (C2). C02012.

DOI: https://doi.org/10.1029/2009jc005275