[1]
K. L. Polzin, J. M. Toole, J. R. LedwellR. W. Schmitt. Spatial Variability of Turbulent Mixing in the Abyssal Ocean. Science. 1997. 276. (5309). 93 -96.
DOI: 10.1126/science.276.5309.93
Google Scholar
[2]
Walter Munk, Carl Wunsch. Abyssal recipes II: energetics of tidal and wind mixing. Deep Sea Research Part I: Oceanographic Research Papers. 1998. 45. (12). 1977-(2010).
DOI: 10.1016/s0967-0637(98)00070-3
Google Scholar
[3]
J. R. Ledwell, E. T. Montgomery, K. L. Polzin, L. C. St. Laurent, R. W. SchmittJ. M. Toole. Evidence for enhanced mixing over rough topography in the abyssal ocean. 2000. 403. (6766). 179-182.
DOI: 10.1038/35003164
Google Scholar
[4]
N. J. Balmforth, G. R. IerleyW. R. Young. Tidal Conversion by Subcritical Topography. Journal of Physical Oceanography. 2002. 32. (10). 2900-2914.
DOI: 10.1175/1520-0485(2002)032<2900:tcbst>2.0.co;2
Google Scholar
[5]
Stefan G. Llewellyn SmithW. R. Young. Conversion of the Barotropic Tide. Journal of Physical Oceanography. 2002. 32. 1554~1566.
DOI: 10.1175/1520-0485(2002)032<1554:cotbt>2.0.co;2
Google Scholar
[6]
Louis St. Laurent, Steven Stringer, Chris GarrettDominique Perrault-Joncas. The generation of internal tides at abrupt topography. Deep Sea Research Part I: Oceanographic Research Papers. 2003. 50. (8). 987-1003.
DOI: 10.1016/s0967-0637(03)00096-7
Google Scholar
[7]
Sonya Legg, Karin M. H. Huijts. Preliminary simulations of internal waves and mixing generated by finite amplitude tidal flow over isolated topography. Deep Sea Research Part II: Topical Studies in Oceanography. 2006. 53. (1-2). 140-156.
DOI: 10.1016/j.dsr2.2005.09.014
Google Scholar
[8]
S. Khatiwala. Generation of internal tides in an ocean of finite depth: analytical and numerical calculations. Deep-Sea Research I. 2003. 50. 3–21.
DOI: 10.1016/s0967-0637(02)00132-2
Google Scholar
[9]
S. A. Thorpe. Internal Wave Reflection and Scatter from Sloping Rough Topography. Journal of Physical Oceanography. 2001. 31. (2). 537-553.
DOI: 10.1175/1520-0485(2001)031<0537:iwrasf>2.0.co;2
Google Scholar
[10]
Chris Garrett, Eric Kunze. Internal Tide Generation in the Deep Ocean. Annual Review of Fluid Mechanics. 2007. 39. (1). 57-87.
DOI: 10.1146/annurev.fluid.39.050905.110227
Google Scholar
[11]
Maxim Nikurashin, Raffaele Ferrari. Radiation and Dissipation of Internal Waves Generated by Geostrophic Motions Impinging on Small-Scale Topography: Theory. Journal of Physical Oceanography. 2009. 40. (5). 1055-1074.
DOI: 10.1175/2009jpo4199.1
Google Scholar
[12]
Sonya Legg. Internal Tides Generated on a Corrugated Continental Slope. Part I: Cross-Slope Barotropic Forcing*. Journal of Physical Oceanography. 2004. 34. (1). 156-173.
DOI: 10.1175/1520-0485(2004)034<0156:itgoac>2.0.co;2
Google Scholar
[13]
John Marshall, Alistair Adcroft, Chris Hill, Lev PerelmanCurt Heisey. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. 1997. 102. (C3). 5753-5766.
DOI: 10.1029/96jc02775
Google Scholar
[14]
Alistair Adcroft, Chris HillJohn Marshall. Representation of Topography by Shaved Cells in a Height Coordinate Ocean Model. Monthly Weather Review. 1997. 125. (9). 2293-2315.
DOI: 10.1175/1520-0493(1997)125<2293:rotbsc>2.0.co;2
Google Scholar
[15]
Z. Zhang, O. B. FringerS. R. Ramp. Three-dimensional, nonhydrostatic numerical simulation of nonlinear internal wave generation and propagation in the South China Sea. J. Geophys. Res. 2011. 116. (C5). C05022.
DOI: 10.1029/2010jc006424
Google Scholar
[16]
Jr. T. H. Bell. Topographically Generated Internal Waves in the Open Ocean. J. Geophys. Res. 1975. 80. (3). 320-327.
DOI: 10.1029/jc080i003p00320
Google Scholar
[17]
M. C. Buijsman, Y. KanarskaJ. C. McWilliams. On the generation and evolution of nonlinear internal waves in the South China Sea. J. Geophys. Res. 2010. 115. (C2). C02012.
DOI: 10.1029/2009jc005275
Google Scholar