On Asymptotically Non-Expansive Self-Maps in Metric Spaces and Related Stability of Dynamic Systems

Article Preview

Abstract:

This paper investigates self-maps which satisfy a distance constraint in a metric space which mixed point-dependent non-expansive properties, or in particular contractive ones, and potentially expansive properties related to some distance threshold. The above mentioned constraint is feasible in certain real -world problems of usefulness, for instance, when discussing ultimate boundedness in dynamic systems guaranteeing Lyapunov stability. This fact makes the proposed analysis to be potentially useful to investigate global stability properties in dynamic systems in the potential presence of some locally unstable equilibrium points. The results can potentially be applied to stability problems of dynamics systems and circuit theory as the given examples suggest

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 588-589)

Pages:

2140-2150

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Karpagam and S. Agrawal: Fixed Point Theory and Applications Vol. 2009, Article ID 197308, 9 pages, doi: 10. 1155/FPTA/2009/197308 (2009).

Google Scholar

[2] A.A. Eldred and P. Veeramani: Journal of Mathematical Analysis and Applications Vol. 323 (2006), p.1001.

Google Scholar

[3] A. Amini-Harandi, A.P. Farajzadeh, D. O. Reagan and R.P. Agarwal: Fixed Point Theory and Applications Vol. 2009, Article ID 543154, doi: 10. 1155/FPTA/2009/543154 (2009).

DOI: 10.1155/2008/543154

Google Scholar

[4] M. Kikkawa and T. Suzuki: Fixed Point Theory and Applications Vol. 2008, Article ID 649749, 8 pages, doi: 10. 1155/FPTA/2008/649749 (2008).

Google Scholar

[5] Y. Enjouji, N. Nakanishi and T. Suzuki: Fixed Point Theory and Applications, Vol. 2009, Article ID 192872, 10 pages, doi: 10. 1155/FPTA/2009/192872 (2009).

DOI: 10.1155/2009/192872

Google Scholar

[6] M. De la Sen: Fixed Point Theory and Applications Vol. 2009, Article ID 815637, 25 pages, doi: 10. 1155/FPTA/2009/815637(2009).

DOI: 10.1155/2009/815637

Google Scholar

[7] M. De la Sen: Fixed Point Theory and Applications Vol. 2010, Article ID 438614, 20 pages, doi: 10. 1155/2010/438614 (2010).

DOI: 10.1155/2010/438614

Google Scholar

[8] M. De la Sen: Fixed Point Theory and Applications Vol. 2008, Article ID 480187, 20 pages, doi: 10. 1155/2008/480187(2008).

Google Scholar

[9] E. Turkmen, S.H. Khan and M. Ozdemir: Discrete Dynamics in Nature and Society Vol. 2011, Article ID 487864, 16 pages, 2011. doi: 10. 1155/2011/487864(2011).

Google Scholar

[10] M.E. Gordji and H. Khodaei: Discrete Dynamics in Nature and Society Vol. 2010, Article ID 140767, 15 pages, 2010. doi: 10. 1155/2010/149767(2010).

Google Scholar

[11] M. De la Sen and A. Ibeas: Discrete Dynamics in Nature and Society Vol. 2009, Article ID 315713, 28 pages, 2009. doi: 10. 1155/2009/3125713(2009).

Google Scholar

[12] M. de la Sen and A. Ibeas: Discrete Dynamics in Nature and Society Vol. 2008, Article ID 231710, 31 pages, 2008, doi. 10. 1155/2008/231710(2008).

Google Scholar

[13] M. De la Sen: Abstract and Applied Analysis Vol. 2009, Article ID 670314, 34 pages, 2009. doi: 10. 1155/2009/670314.

Google Scholar

[14] M. De la Sen: Abstract and Applied Analysis Vol. 2009, Article ID 216746, 37 pages, 2009. doi: 10. 1155/2009/216746 (2009).

Google Scholar

[15] M. De la Sen, A. Ibeas, S. Alonso-Quesada and R. Nistal: Informatica Vol. 22 (2011), p.339.

Google Scholar

[16] M. De la Sen: Acta Applicandae Mathematicae Vol. 83(2004), p.235.

Google Scholar

[17] M. De la Sen: Applied Mathematics and Computation Vol. 199 (2008), p.464.

Google Scholar

[18] M. De la Sen: Journal of Mathematical Analysis and Applications Vol. 321 (2006), p.621.

Google Scholar

[19] H.Y. Liu and W.G. Wang: Discrete Dynamics in Nature and Society Vol. 2011(2011).

Google Scholar

[20] H. Bereketoglu, G. Sehyan and A. Ogun: Mathematical Modelling and Analysis Vol. 1 (2010), p.175.

Google Scholar

[21] C.Z. Li, Y.K. Li and Y.A. Ye: Communications in Nonlinear Science and Numerical Simulation Vol. 15 (2010), p.3599.

Google Scholar