An Optimal Rapid Energy-Storing Design for the Stackable Piezoelectric Power Generation Devices

Article Preview

Abstract:

The optimal design for stackable piezoelectric power generation device and its micropower energy storage method is presented in this work. In this configuration, three different arrangement designs of piezoelectric power generation devices were put and compared for obtaining a greater produced output power. Evidence shows that the Sample 2 among the three different arrangement stackable piezoelectric power generation devices could avoid damage to the PZT-5H and achieve a highest instantaneous output power (5.175mW). Moreover, to establish the high efficiency energy storage system, using low power buck converter IC (LTC3588-1) was proposed. The obtained results show that a 15mAh Ni-MH battery could be fully-charged within two hours by utilizing the optimal arrangement design stackable piezoelectric power generation device combining with micropower energy storage system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

189-194

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. A. Gueymard, Solar Energy, Vol. 76, pp.423-453, (2004).

Google Scholar

[2] Mathew, and H. Takakura, Solar Energy Materials and Solar Cells, Vol. 92, 371-373, (2008).

Google Scholar

[3] J. G. Leishman, Wind Energy, Vol. 5, pp.85-132, (2002).

Google Scholar

[4] P. Pinson, C. Chevallier, and G. N. Kariniotakis, IEEE Transactions on Power Systems, Vol. 22, pp.1148-1156, (2007).

Google Scholar

[5] S. R. Anton, and H. A. Sodano, Smart Materials and Structures, Vol. 16, pp. R1-R21, (2007).

Google Scholar

[6] T. Kousksou, J. P. Bedecarrats, D. Champier, P. Pignolet, and C. Brillet, Journal of Power Sources, Vol. 196, pp.4026-4032, (2011).

DOI: 10.1016/j.jpowsour.2010.12.015

Google Scholar

[7] S. Roundy, E.S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J.M. Rabaey, and P.K. Wright., IEEE Pervasive Computing, Vol. 4, pp.28-36, (2005).

DOI: 10.1109/mprv.2005.14

Google Scholar

[8] R. Amirtharajah, and A.P. Chandrakasan, IEEE Journal of Solid-State Circuits, Vol. 33, pp.687-695, (1998).

Google Scholar

[9] B.H. Stark and T.C. Green, IEEE Transactions on Electron Devices, Vol. 52, pp.1640-1648, (2005).

Google Scholar

[10] N. M. White, P. G. Jones, and S. P. Beeby, Smart Materials and Structures, Vol. 10, 850-852, (2001).

Google Scholar

[11] H. B. Fang, J. Q. Liu, Z. Y. Xu, L. Dong, L. Wang, D. Chen, B. C. Cai, and Y. Liu, Microelectronics Journal, Vol. 37, 1280-1284, (2006).

Google Scholar

[12] S. Roundy, P. K. Wright, and J. Rabaey, Computer Communications, Vol. 26, 1131-1134, (2003).

Google Scholar

[13] F. Goldschmidtboeing, and P. Woias, Journal of Micromechanics and Microengineering, Vol. 18, 104013, (2008).

Google Scholar

[14] S. D. Kwona, Applied Physics Letters, Vol. 97, 164102, (2010).

Google Scholar

[15] G. K. Ottman, H. F. Hofmann, A. C. Bhatt, and G. A. Lesieutre, IEEE Transactions on Power Electronics, Vol. 17, 669-676, (2002).

DOI: 10.1109/tpel.2002.802194

Google Scholar

[16] H. Hu, H. Xue, and Y. Hu, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 54, 1177-1187, (2007).

Google Scholar

[17] Ahmadreza Tabesh, and L. G. Frechette, IEEE Transactions on Power Electronics, Vol. 57, 840-849, (2010).

Google Scholar