An Optimal Rapid Energy-Storing Design for the Stackable Piezoelectric Power Generation Devices

Abstract:

Article Preview

The optimal design for stackable piezoelectric power generation device and its micropower energy storage method is presented in this work. In this configuration, three different arrangement designs of piezoelectric power generation devices were put and compared for obtaining a greater produced output power. Evidence shows that the Sample 2 among the three different arrangement stackable piezoelectric power generation devices could avoid damage to the PZT-5H and achieve a highest instantaneous output power (5.175mW). Moreover, to establish the high efficiency energy storage system, using low power buck converter IC (LTC3588-1) was proposed. The obtained results show that a 15mAh Ni-MH battery could be fully-charged within two hours by utilizing the optimal arrangement design stackable piezoelectric power generation device combining with micropower energy storage system.

Info:

Periodical:

Edited by:

Liangzhong Jiang

Pages:

189-194

Citation:

C. W. Wang et al., "An Optimal Rapid Energy-Storing Design for the Stackable Piezoelectric Power Generation Devices", Advanced Materials Research, Vol. 590, pp. 189-194, 2012

Online since:

November 2012

Export:

Price:

$38.00

[1] C. A. Gueymard, Solar Energy, Vol. 76, pp.423-453, (2004).

[2] Mathew, and H. Takakura, Solar Energy Materials and Solar Cells, Vol. 92, 371-373, (2008).

[3] J. G. Leishman, Wind Energy, Vol. 5, pp.85-132, (2002).

[4] P. Pinson, C. Chevallier, and G. N. Kariniotakis, IEEE Transactions on Power Systems, Vol. 22, pp.1148-1156, (2007).

[5] S. R. Anton, and H. A. Sodano, Smart Materials and Structures, Vol. 16, pp. R1-R21, (2007).

[6] T. Kousksou, J. P. Bedecarrats, D. Champier, P. Pignolet, and C. Brillet, Journal of Power Sources, Vol. 196, pp.4026-4032, (2011).

DOI: https://doi.org/10.1016/j.jpowsour.2010.12.015

[7] S. Roundy, E.S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J.M. Rabaey, and P.K. Wright., IEEE Pervasive Computing, Vol. 4, pp.28-36, (2005).

DOI: https://doi.org/10.1109/mprv.2005.14

[8] R. Amirtharajah, and A.P. Chandrakasan, IEEE Journal of Solid-State Circuits, Vol. 33, pp.687-695, (1998).

[9] B.H. Stark and T.C. Green, IEEE Transactions on Electron Devices, Vol. 52, pp.1640-1648, (2005).

[10] N. M. White, P. G. Jones, and S. P. Beeby, Smart Materials and Structures, Vol. 10, 850-852, (2001).

[11] H. B. Fang, J. Q. Liu, Z. Y. Xu, L. Dong, L. Wang, D. Chen, B. C. Cai, and Y. Liu, Microelectronics Journal, Vol. 37, 1280-1284, (2006).

[12] S. Roundy, P. K. Wright, and J. Rabaey, Computer Communications, Vol. 26, 1131-1134, (2003).

[13] F. Goldschmidtboeing, and P. Woias, Journal of Micromechanics and Microengineering, Vol. 18, 104013, (2008).

[14] S. D. Kwona, Applied Physics Letters, Vol. 97, 164102, (2010).

[15] G. K. Ottman, H. F. Hofmann, A. C. Bhatt, and G. A. Lesieutre, IEEE Transactions on Power Electronics, Vol. 17, 669-676, (2002).

DOI: https://doi.org/10.1109/tpel.2002.802194

[16] H. Hu, H. Xue, and Y. Hu, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 54, 1177-1187, (2007).

[17] Ahmadreza Tabesh, and L. G. Frechette, IEEE Transactions on Power Electronics, Vol. 57, 840-849, (2010).