[1]
Cerjan C, Kosloff D, Kosloff R, Reshef M. 1985.A nonreflecting boundary condition for discrete acoustic and elastic wave equation[J].Geophysics, 50(4): 705-708.
DOI: 10.1190/1.1441945
Google Scholar
[2]
Daudt C R,Brail L W,Nowack R L,Chiang C S.1989.A comparison of finite-difference and Fourier method calculations of synthetic seismograms[J].Bull Seis SocAmer,79[4]:1210-1230.
DOI: 10.1785/bssa0790041210
Google Scholar
[3]
Fornberg B. 1996. A Practical Guide to Pseudospectral Method [M]. Cambridge, UK: Cambridge University Press:15-34.
Google Scholar
[4]
Herrmann R B.1979.SH-wave generation by dislocation source a numerical study[J].Bull Seis Soc Amer,69(1):1-15.
Google Scholar
[5]
Komatitsch D,Vilotte J P.1998.The spectral element method:An efficient tool to simulate the seismic response of 2D and 3D geological structures[J]. Bull Seis Soc Amer,88(2):368-392.
DOI: 10.1785/bssa0880020368
Google Scholar
[6]
Kosloff D. Baysal E. 1982. Forward modeling by a Fourier method [J]. Geophysics, 47(10):1402-1412.
DOI: 10.1190/1.1441288
Google Scholar
[7]
Mikhailenko B G. 2000. Seismic modeling by the spectral- finite difference method [J]. Phys Earth Planet Interi,119(1-2):133-147.
Google Scholar
[8]
Mittet R.2002.Free-Surface boundary conditions for elastic staggered-grid modeling schemes[J].Geophysics,67(5):1616-1623.
DOI: 10.1190/1.1512752
Google Scholar
[9]
Ozdenvar T,McMechan G A.1996.Causes and reduction of numerical artifacts in pseudo-spectral wavefield extrapolation[J].Geophys J Int,126(3):819-828.
DOI: 10.1111/j.1365-246x.1996.tb04705.x
Google Scholar
[10]
Virieux J.1986.P-SV wave propagation in heterogeneous media:Velocity-stress finite-difference method[J].Geophysics,51(4):889-901.
DOI: 10.1190/1.1442147
Google Scholar
[11]
Wang Y B, Takenaka H, Furumura T. 2001. Modeling seismic wave propagation in a two-dimensional cylindrical whole earth model using the pseudospectral method [J]. Geophys J Int,145(3): 689-708.
DOI: 10.1046/j.1365-246x.2001.01413.x
Google Scholar
[12]
Witte D C, Richards P G. 1990. The pseudospectral method for simulating wave propagation[C]∥Lee D, Cakmak R,Vichnevetsky R eds. Computational Acoustics: Proceedings of the 2nd IMA CS Symposium on Computational Acoustics . North-Holland, New York: 1-18.
Google Scholar
[13]
Wang Y B, Takenaka H. 2001. A multidomain approach of the Fourier pseudospectral method using discontinuous grid for elastic wave modeling[J]. Earth Planets and Space, 53:149-158. In Chinese.
DOI: 10.1186/bf03352372
Google Scholar
[14]
Wei Xing, Wang Yanbin.2010.Hybrid PSM/FDM method for seismic wavefield simulation. Acta Seismologica Sinca, 32(4):392-400. In Chinese.
Google Scholar
[15]
Yan Jiupeng. Wang Yanbin. 2008. Modeling seismic wave propagation in heterogeneous medium using overlap domain pseudospectral method. Acta Seismologica Sinica, 30(1):47-58. In Chinese.
DOI: 10.1007/s11589-008-0046-2
Google Scholar
[16]
Zhao Z, Xu J, Horiuchi S. 2003. Differentiation operation in the wave equation for the pseudospectral method with a staggered mesh[J].Earth Planets and Space, 53:327-332.
DOI: 10.1186/bf03352389
Google Scholar