Effects of Adding Nitrifying Bacteria on Microbial Communities and Nitrification in a Laboratory-Scale a/O Reactor Treating Leather-Tanning Wastewater

Article Preview

Abstract:

A laboratory-scale anoxic/oxic reactor was used to analyze the effects of adding nitrifying bacteria on microbial communities in the treatment of leather-tanning wastewater. The reactor was operated in series in continuous flow mode for 25 d after an acclimation period of 45 d, and the nitrifying bacteria were added after the acclimation period. The addition of nitrifying bacteria into the wastewater significantly enhanced NH4+-N removal efficiency. The Arrhenius and Jacob-Monod models were applied to determine the optimum and acceptable operating conditions for this process. The optimum temperature range and concentration of dissolved oxygen were 15-30 oC and 5 mg L-1, respectively. Use of Nitrosomonas europaea and Nitrobacter were considered reliable for leather-tanning wastewater treatment due to their dominant status as nitrifying bacteria. Substrate half-saturation constants for ammonia oxidizing bacteria and nitrite oxidizing bacteria were 24.13 mg L-1 and 5.43 mg L-1, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

289-294

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Rivela, M.T. Moreira, C. Bornhardt, R. Meändez and G. Feijoo: Environ. Sci. Technol. Vol. 38 (2004), p. (1901)

Google Scholar

[2] E. Genschow, W. Hegemann and C. Maschke: Water Res. Vol. 30 (1996), p. (2072)

Google Scholar

[3] H. Myoga, H. Asano, Y. Nomura and H. Yoshida: Water Sci. Technol. Vol. 23 (1991), p.1117

Google Scholar

[4] M. Strous, J.A. Fuerst, E.H.M. Kramer, S. Logemann, G. Muyzer, K.T. van de Pas-Schoonen, R. Webb, J.G. Kuenen and M.S.M. Jetten: Nature Vol. 400 (1999), p.446

DOI: 10.1038/22749

Google Scholar

[5] S. Juretschko, G. Timmerman, M.C. Schmid, K.H. Schleifer, A. Pmmerening-Roser, H.P. Koops and M. Wagner: Appl. Environ. Microbiol. Vol. 64 (1998), p.3042

Google Scholar

[6] P. Hugenholtz, G. Tyson and L. Blackall: Methods Mol. Biol. Vol. 176 (2001), p.29

Google Scholar

[7] R.I. Amann, L. Krumholz and D.A. Stahl: J. Bacteriol. Vol. 172 (1990), p.762

Google Scholar

[8] G. Zuo, D.J. Roberts, G.W. Jackson, G. Fox and R.C. Willson: Water Sci. Technol. Vol. 60 (2009), p.1745

Google Scholar

[9] W. Manz, R. Amann and W. Ludwig: Syst. Appl. Microbiol. Vol. 15 (1992), p.593

Google Scholar

[10] Y.Y. Xiao, D.J. Roberts, G.Y. Zuo, M. Badruzzaman and G.S. Lehman: Water Res. Vol. 44 (2010), p.4029

Google Scholar

[11] APHA: Standard methods for the examination of water and wastewater, (American Public Health Association, USA 2005)

Google Scholar

[12] A.L. Downing and A.P. Hopwood: Aquat. Sci. Vol. 26 (1964), p.271

Google Scholar

[13] R. Biswas, S. Bagchi, P. Bihariya, A. Das and T. Nandy: Bioresource Technol. Vol. 102 (2011), p.2487

Google Scholar

[14] A. Babloyantz and G. Nicolis: J. Theor. Biol. Vol. 34 (1972), p.185

Google Scholar

[15] A. Gann: Curr. Biol. Vol. 20 (2010), p.718

Google Scholar

[16] D. Kim and S. Kim: Water Res. Vol. 40 (2006), p.887

Google Scholar

[17] C. Grunditz and G. Dalhammar: Water Res. Vol. 35 (2001), p.433

Google Scholar

[18] R. Blackburne, V.M. Vadivelu, Z. Yuan and J. Keller: Water Res. Vol. 41 (2007), p.3033

Google Scholar

[19] A.E. Taylor and P.J. Bottomley: Soil. Biol. Biochem. Vol. 38 (2006), p.828

Google Scholar

[20] A.C. Kwiatkowska and I.W. Barylaa: J. Biotechnol. Vol. 150 (2010), p.250

Google Scholar