[1]
Hang C C, Parks P C. Comparative Studies of Mode Reference Adaptive Control System[J]. IEEE Trans, Automatic Control, 1973, 18 (5): 419-428.
DOI: 10.1109/tac.1973.1100361
Google Scholar
[2]
Lu J, Phuah J, Yahagi T. A Method of Mode Reference Adaptive Control for MIMO Nonlinear System Using Neural Networks[J]. IEICE Trans, Fundamentals, 2001, 84(8): 1933-(1941).
Google Scholar
[3]
Rossomando F G, Soria C, Patino D, Carelli R. Model Reference Adaptive Control for Mobile Robots in Trajectory Tracking using Radial Basis Function Neural Networks[J]. Latin American Applied Research, 2011, 41(8 ): 177-182.
Google Scholar
[4]
Elbuluk M E, Tong L, Husain I. Neural Network based Model Reference Adaptive Systems for High Performance Motor Drives and Motion Controls[J]. IEEE Trans, Industry Applications, 2000, 38(3): 879-886.
DOI: 10.1109/tia.2002.1003444
Google Scholar
[5]
Tanaka Kanya, Yoshimura Yoshie. MRAC Combined Neural Networks for Ultra-Sonic Motor[J]. JSME International Journal Series-C, 2006, 49(4): 1084-1090.
DOI: 10.1299/jsmec.49.1084
Google Scholar
[6]
Wang Hui, Pi Daoying, Sun Youxian. Online SVM Regression Algorithm-based Adaptive Inverse Control[J]. Neurocomputing, 2006, 70(4): 952-959.
DOI: 10.1016/j.neucom.2006.10.021
Google Scholar
[7]
Vapnik V N. The Nature of Statistical Learning Theory, Springer[M]. New York, USA, (1995).
Google Scholar
[8]
Smola A J, Scholkopf B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3): 199-222.
DOI: 10.1023/b:stco.0000035301.49549.88
Google Scholar
[9]
Romero Enrique, Toppo Daniel. Comparing Support Vector Machines and Feedforward Neural Networks With Similar Hidden-Layer Weights[J]. IEEE Transaction on Neural Network, 2007, 18(3): 959-963.
DOI: 10.1109/tnn.2007.891656
Google Scholar
[10]
Chevalier Robert F, Hoogenboom Gerrit, McClendon Ronald W. Support vector regression with reduced training sets for air temperature prediction a comparison with artificial neural networks[J]. Neural Computing & Applicatio, 2011, 20(1): 151-159.
DOI: 10.1007/s00521-010-0363-y
Google Scholar
[11]
Xu J, Chen S. Adaptive Control of A Class of Nonlinear Discrete-time Systems Using Support Vector Machine[C]. Proceedings of the Fifth World Congress on Intelligent Control and Automation. Hangzhou, 2004: 440-443.
DOI: 10.1109/wcica.2004.1340610
Google Scholar
[12]
Shin Jongho, Kim H Jin, Kim Youdan. Adaptive Support Vector Regression for UAV Flight Control[J]. Neural Networks , 2011, 24(1): 109-120.
DOI: 10.1016/j.neunet.2010.09.011
Google Scholar
[13]
Cheng Xi Xue, Poo Aun-Neow, Chou Slaw Kiang. Support Vector Regression Model Predictive Control on a HVAC Plant[J]. Control Engineering Practice, 2007, 15(8): 897-908.
DOI: 10.1016/j.conengprac.2006.10.010
Google Scholar
[14]
Shin Jongho, Kim H Jin, Park Sewook. Model Predictive Flight Control Using Adaptive Support Vector Regression[J]. Neurocomputing, 2010, 73(4): 1031-1037.
DOI: 10.1016/j.neucom.2009.10.002
Google Scholar
[15]
Cherkassky V, Ma Y. Practical Selection of SVM Parameters and Noise Estimation for SVM Regression[J]. Neural Networks, 2004, 17: 113-126.
DOI: 10.1016/s0893-6080(03)00169-2
Google Scholar
[16]
Parrella F. Online Support Vector Regression[D]. Genoa: University of Genoa, (2007).
Google Scholar
[17]
Fossen T I. High performance ship autopilot with wave filter[C]. Proc. Ship Control System Symp., Ottawa, 1993: 25-29.
Google Scholar
[18]
J Van Amerongen. Adaptive Steering of Ships—A model Reference Approach[J]. Automatica, 1984, 20: 3-14.
DOI: 10.1016/0005-1098(84)90060-8
Google Scholar