[1]
M. Gümüs and J. H. Bookbinder, Cross-docking and its implications in location - distribution system, Journal of Business Logistics, vol. 25, pp.199-228, (2004).
DOI: 10.1002/j.2158-1592.2004.tb00187.x
Google Scholar
[2]
L. Y. Tsui and C. -H. Chang, An optimal solution to a dock door assignment problem, Computers & Industrial Engineering, vol. 23, pp.283-286, (1992).
DOI: 10.1016/0360-8352(92)90117-3
Google Scholar
[3]
J. J. Bartholdi Iii and K. R. Gue, REDUCING LABOR COSTS IN AN LTL CROSSDOCKING TERMINAL, Operations Research, vol. 48, p.823, (2000).
DOI: 10.1287/opre.48.6.823.12397
Google Scholar
[4]
K. R. Gue, The Effects of Trailer Scheduling on the Layout of Freight Terminals, Transportation Science, vol. 33, p.419, (1999).
DOI: 10.1287/trsc.33.4.419
Google Scholar
[5]
J. J. Bartholdi Iii and K. R. Gue, The Best Shape for a Crossdock, Transportation Science, vol. 38, pp.235-244, (2004).
DOI: 10.1287/trsc.1030.0077
Google Scholar
[6]
Li, Y., Lim, A., & Rodrigues, B. (2004). Crossdocking-JIT scheduling with time windows. [Article]. Journal of the Operational Research Society, 55(12), 1342-1351.
DOI: 10.1057/palgrave.jors.2601812
Google Scholar
[7]
M. Y. Maknoon and P. Baptiste, Cross-docking: increasing platform efficiency by sequencing incoming and outgoing semi-trailers, International Journal of Logistics: Research & Applications, vol. 12, pp.249-261, (2009).
DOI: 10.1080/13675560903076081
Google Scholar
[8]
Y. Kum Khiong, J. Balakrishnan, and C. Chun Hung, AN ANALYSIS OF FACTORS AFFECTING CROSS DOCKING OPERATIONS, Journal of Business Logistics, vol. 31, pp.121-148, (2010).
DOI: 10.1002/j.2158-1592.2010.tb00131.x
Google Scholar
[9]
W. Yu and P. J. Egbelu, Scheduling of inbound and outbound trucks in cross docking systems with temporary storage, European Journal of Operational Research, vol. 184, pp.377-396, (2008).
DOI: 10.1016/j.ejor.2006.10.047
Google Scholar
[10]
N. Boysen, M. Fliedner, and A. Scholl, Scheduling inbound and outbound trucks at cross docking terminals, OR Spectrum, vol. 32, pp.135-161, (2010).
DOI: 10.1007/s00291-008-0139-2
Google Scholar
[11]
N. Boysen, Truck scheduling at zero-inventory cross docking terminals, Computers & Operations Research, vol. 37, pp.32-41, (2010).
DOI: 10.1016/j.cor.2009.03.010
Google Scholar
[12]
L. Cavique, A scalable algorithm for the market basket analysis, Journal of Retailing and Consumer Services, vol. In Press, Corrected Proof, (2010).
Google Scholar
[13]
V. Boginski, S. Butenko, and P. M. Pardalos, Mining market data: A network approach, Computers & Operations Research, vol. 33, pp.3171-3184, (2006).
DOI: 10.1016/j.cor.2005.01.027
Google Scholar
[14]
H. Wang, T. Obremski, B. Alidaee, and G. Kochenberger, Clique partitioning model for clustering: A comparison with K-means and latent class analysis, Communications in Statistics- Simulation and Computation, vol. 37, pp.1-13, (2008).
DOI: 10.1080/03610910701723559
Google Scholar
[15]
H. Wang, B. Alidaee, F. Glover, and G. Kochenberger, Solving Group Technology Problems via Clique Partitioning, International Journal of Flexible Manufacturing Systems, vol. 18, pp.77-97, (2006).
DOI: 10.1007/s10696-006-9011-3
Google Scholar
[16]
U. Dorndorf, F. Jaehn, and E. Pesch, Modelling Robust Flight-Gate Scheduling as a Clique Partitioning Problem, TRANSPORTATION SCIENCE, p. trsc. 1070. 0211, March 24, 2008 (2008).
DOI: 10.1287/trsc.1070.0211
Google Scholar
[17]
E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis, The Complexity of Multiterminal Cuts , SIAM J. Comput., vol. 23, pp.864-894, (1994).
DOI: 10.1137/s0097539792225297
Google Scholar
[18]
M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness New York: Freeman, (1979).
Google Scholar
[19]
T. Bui and A. Peck, Finding Good Approximate Vertex and Edge Partitions is NP-hard, INFORMATION PROCESSING LETTERS, vol. 42, pp.153-159, (1992).
DOI: 10.1016/0020-0190(92)90140-q
Google Scholar
[20]
G. Dahl, G. Storvik, and A. Fadnes, Large-Scale Integer Programs in Image Analysis, OPERATIONS RESEARCH, vol. 50, pp.490-500, (2002).
DOI: 10.1287/opre.50.3.490.7741
Google Scholar
[21]
M. Grotschel and Y. Wakabayashi, A cutting plane algorithm for a clustering problem, Mathematical Programming, vol. 45, pp.59-96, (1989).
DOI: 10.1007/bf01589097
Google Scholar
[22]
M. Grotschel and Y. Wakabayashi, Facets of the clique partitioning polytope, Mathematical Programming, vol. 47, pp.367-387, (1990).
DOI: 10.1007/bf01580870
Google Scholar
[23]
S. Chopra and M. R. Rao, The Partition Problem, Mathematical Programming, vol. 59, pp.87-115, (1993).
Google Scholar
[24]
M. Oosten, J. Rutten, and F. Spieksma, The Clique partitioning problem: Facets and patching facets, Networks, vol. 38, pp.209-226, (2001).
DOI: 10.1002/net.10004
Google Scholar
[25]
G. Palubeckis, A Branch-and-Bound Approach Using Polyhedral Results for a Clustering Problem, INFORMS JOURNAL ON COMPUTING, vol. 9, pp.30-42, (1997).
DOI: 10.1287/ijoc.9.1.30
Google Scholar
[26]
A. Mehrotra and M. Trick, Clique and Clustering: A Combinatorial Approach, Operations Research Letters, vol. 22, pp.1-12, (1998).
Google Scholar
[27]
I. Charon and O. Hudry, Noising Methods for a Clique Partitioning Problem, Discrete Appl. Math., vol. 154, pp.754-769, (2006).
DOI: 10.1016/j.dam.2005.05.029
Google Scholar
[28]
I. Charon and O. Hudrey, The Noising method: a New Combinatorial Optimization Method, OPERATIONS RESEARCH LETTERS, vol. 14, pp.133-137, (1993).
DOI: 10.1016/0167-6377(93)90023-a
Google Scholar
[29]
S. G. de Amorim, J. P. Barthelemy, and C. C. Ribeiro, Clustering and Clique Partitioning: Simulated Annealing and Tabu Search Approaches, Journal of classification. 9, no. 1, (1992).
DOI: 10.1007/bf02618466
Google Scholar
[30]
Y. -C. Chiou and L. W. Lan, Genetic Clustering Algorithms, EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, vol. 135, pp.413-427, (2001).
DOI: 10.1016/s0377-2217(00)00320-9
Google Scholar
[31]
T. Feo and M. Khellaf, A Class of Bounded Approximation Algorithms for Graph Partitioning, NETWORKS, vol. 20, pp.181-195, (1990).
DOI: 10.1002/net.3230200205
Google Scholar
[32]
T. Feo, O. Goldschmidt, and M. Khellaf, On-Half Approximation Algorithm for the k-Partition Problem, OPERATIONS RESEARCH, vol. 40, pp. S170-S173, (1992).
DOI: 10.1287/opre.40.1.s170
Google Scholar
[33]
H. Wang, New Model and Solution Methodology for Clique Partitioning Problem and Applications, in School of Business Administration University: University of Mississippi, (2004).
Google Scholar