Optimization of the Synthesis Conditions of LiMnPO4 for Lithium Secondary Battery by Solid State Method

Article Preview

Abstract:

In order to enhance the electrochemical performance of LiMnPO4 cathode material, we optimized the synthesis conditions of LiMnPO4 using a simple solid state reaction. The influence of factors of the pre-sintering temperature, carbon source and molar ratio of Zn to Mn, as well as the electrochemical properties of obtained LiMnPO4 powder were studied. The precursor of Zn-doping LiMnPO4/C was characterized by Differential Scanning Calorimetry and thermogravimetry. The microstructure of the samples was characterized by X-ray diffraction (XRD). The optimized LiMnPO4 cathode has good electrochemical properties and its discharge capacity could reach 140.2 mAh g−1 at 0.02 C rate and 111.3 mAh g−1 at 0.1 C rate with satisfactory cycling performance. It implies that the synthesis of LiMnPO4/C composite with excellent electrochemical performances can be achieved by a simple solid state method, which will boost the practical application of LiMnPO4 cathode materials.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 602-604)

Pages:

1044-1049

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. M. Tarascon, M. Armand, Nature. 414 (2001) 359.

Google Scholar

[2] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 114 (1997) 1188.

Google Scholar

[3] A. Yamada, S.C. Chung, J. Electrochem. Soc. 148 (8) (2001) A960–A967.

Google Scholar

[4] G.H. Li, H. Azuma, M. Tohda, Electrochem. Solid-State Lett.5 (2002) A135–A137.

Google Scholar

[5] U. Dettlaff-Weglikowska, N. Sato, J. Yoshida,and S. Roth, Phys. Status Solidi B 246, No.11–12 (2009) 2482–2485

DOI: 10.1002/pssb.200982290

Google Scholar

[6] T. Shiratsuchi, S. Okada, T. Doi, J. Yamaki, Electrochimica Acta. 54 (2009) 3145–3151.

DOI: 10.1016/j.electacta.2008.11.069

Google Scholar

[7] G.Y. Chen, J.D. Wilcox, and T.J. Richardson, Electrochemical and Solid-State Letters, 11(11) (2008) A190-A194.

Google Scholar

[8] T. Drezen, N.-H. Kwon, P.Bowen, I. Teerlinck, M. Isono, and I. Exnar, J. Power Sources, 174(2007)949.

DOI: 10.1016/j.jpowsour.2007.06.203

Google Scholar

[9] Y.R. Wang Y.F. Yang ,Y.B. Yang, H.X. Shao, Solid State Communications, 150 (2010) 81-85.

Google Scholar

[10] D.Y. Wang, H. Buqa, M. Crouzet, G. Deghenghi,T. Drezen, I. Exnar, N-H Kwon, J.H. Miners, L. Poletto, M. Grätzel, J. of Power Sources 189(2009)624–628.

DOI: 10.1016/j.jpowsour.2008.09.077

Google Scholar

[11] C. Delacourt, P. Poizot, M. Morcrette, J.M. Tarascon, C. Masquelier, Chem. Mater. 16 (2004) 93.

Google Scholar

[12] A. Vadivel Murugan, T. Muraliganth, and A. Manthiram,J. of The Electrochemical Society, 156 (2)(2009) A79-A83.

Google Scholar

[13] N.H. Kwon, T. Drezen, I. Exnar, I. Teerlinck, M. Isono, M. Graetzel, Electrochem. Solid-State Lett. 9 (2007) A277.

DOI: 10.1149/1.2191432

Google Scholar

[14] X.H Liu, Z.W. Zhao, Powder Technology,197(2010)309–313.

Google Scholar

[15] F. Yu,J.J. Zhang, Y.F. Yang G.Z. Song, Electrochimica Acta 54 (2009) 7389–7395.

Google Scholar

[16] G.Y Chen, J.D. Wilcox, and T.J. Richardson, Electrochem. and Solid-State Lett. 11 (2008) A190-A194.

Google Scholar

[17] D.Y. Wang, C.Y. Ouyang, T. Drézen, I. Exnar, J. Electrochem. Soc.157 (2) (2010) A225-A229.

Google Scholar

[18] C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J.-B. Leriche, M. Morcrette, J.-M. Tarascon, and C. Masquelier, J. Electrochem. Soc. 152 (2005) A913.

DOI: 10.1149/1.1884787

Google Scholar