The Effect of Cooling Rate During the Hydrothermal Growth on the Tip Geometry of ZnO Nanorods

Article Preview

Abstract:

The ZnO nanorods with sharp tip have been fabricated via water cooling treatment during the hydrothermal growth. The morphology and crystal structure of the zinc oxide nanostructure were examined by field-emission scanning electron microscopy and x-ray diffraction, respectively. The structural characterizations revealed that the as-synthesized nanorods were single crystalline, with a hexagonal phase. It has been demonstrated that the cooling rate is the critical factor of the synthesis of the sharp tip ZnO nanorods by comparing the different cooling conditions. The growth mechanism for the sharp tip ZnO nanorods has been proposed on the basis of the different crystallographic habits of wurtzite hexagonal ZnO crystals.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 602-604)

Pages:

144-147

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. -H. Tian, J. Hu, S. -S. Li, F. Zhang, J. Liu, J. Shi, X. Li, Z. -Q. Tian and Y. Chen: Nanotechnology Vol. 22 (2011), p.245601.

Google Scholar

[2] H. Q. Zhang, L. Z. Hu, Z. W. Zhao, J. X. Ma, Y. Qiu, B. Wang, H. W. Liang and J. M. Bian: Vacuum vol. 85 (2011), pp.718-720.

Google Scholar

[3] Q. Ahsanulhaq, A. Umar and Y. B. Hahn: Nanotechnology Vol. 18 (2007) , p.115603.

Google Scholar

[4] Q. Zhao, C. K. Huang, R. Zhu, J. Xu, L. Chen and D. P. Yu: Solid State Commun Vol. 151 (2011), p.1650.

Google Scholar

[5] X. S. Fang, Y. Bando, U. K. Gautam, C. Ye and D. Golberg: J Mater Chem Vol. 18 (2008), pp.509-522.

Google Scholar

[6] F. Jamali-Sheini, K. R. Patil, D. S. Joag and M. A. More: Appl Surf Sci Vol. 257 (2011), p.8366.

Google Scholar

[7] S. S. Park, J. M. Lee, S. J. Kim, S. W. Kim, M. S. Yi, S. H. Kim, S. Maeng and S. Fujita: Nanotechnology Vol. 19 (2008), p.245708.

Google Scholar

[8] J. Zhong, G. Saraf, H. Chen, Y. Lu, H. M. Ng, T. Siegrist, A. Parekh, D. Lee and E. A. Armour: J Electron Mater Vol. 36 (2007), p.654.

Google Scholar

[9] Z. Zhang, H. Yuan, J. Zhou, D. Liu, S. Luo, Y. Miao, Y. Gao, J. Wang, L. Liu, L. Song, Y. Xiang, X. Zhao, W. Zhou and S. Xie: J Phys Chem B Vol. 110 (2006), p.8566.

DOI: 10.1021/jp0568632

Google Scholar

[10] H. Q. Wang, G. H. Li, L. C. Jia, G. Z. Wang and L. Li: APPLIED PHYSICS LETTERS Vol. 93 (2008) p.153110.

Google Scholar

[11] S. S. Warule, N. S. Chaudhari, J. D. Ambekar, B. B. Kale and M. A. More: Acs Appl Mater Inter Vol. 3 (2011), p.3454.

Google Scholar

[12] Wang Mahua, Zhu Guangping, Zhu Guangping: Acta Phys. Sin.Vol. 60 (2011), p.6.

Google Scholar

[13] J. A. Wang, H. F. Luo, T. Chen and Z. H. Yuan: Nanotechnology Vol. 21 (2010) p.505603.

Google Scholar

[14] M. S. Mo, D. B. Wang, X. S. Du, J. Ma, X. F. Qian, D. P. Chen and Y. T. Qian: Cryst Growth Des Vol. 9 (2009), p.797.

Google Scholar

[15] Y. C. Chang, W. C. Yang, C. M. Chang, P. C. Hsu and L. J. Chen: Crystal Growth Des Vol. 9 (2009), p.3161.

Google Scholar

[16] C. Y. Kuan, J. M. Chou, I. C. Leu and M. H. Hon: J Mater Res Vol. 23 (2008), p.1163.

Google Scholar

[17] X. F. Wu, H. Bai, C. Li, G. W. Lu and G. Q. Shi: Chem Commun Vol. 15 (2006), p.1655.

Google Scholar

[18] Hadis Morkoç, Ümit Özgür: Zinc Oxide: Fundamentals, Materials and Device Technology (WILEY-VCH Verlag GmbH & Co. KgaA, Weinheim 2009).

Google Scholar