Size and Interface Coherency Dependent Phase Transformation of Niobium Nanoparticles Embedded in Copper Matrix by Mechanical Alloying

Article Preview

Abstract:

The object of this work is to investigate the interface and size effects on the structural phase transition of Nb nanoparticles (NPs) embedded in Cu matrix. By means of X-ray diffraction analysis and high-resolution transmission electron microscopy observation, it is found that higher coherency of the Cu/Nb interface benefits the occurrence of phase transition in Nb NPs with larger sizes. The sufficient conditions for the transition are: (1) the size of Nb NPs should be smaller than 8 nm; (2) the Cu/Nb interfaces should be semi-coherent or coherent. The experimental results are consistent with the predictions of Bond Energy model.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 602-604)

Pages:

243-248

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Manna, P. P. Chattopadhyay, F. Banhart and H. J. Fecht: Appl. Phys. Lett. Vol 81 (2002), p.4136

Google Scholar

[2] S. H. Huh, H. K. Kim, J. W. Park and G. H. Lee: Phys. Rev. B, Vol 62 (2000), p.2937

Google Scholar

[3] P. P. Chattopadhyay, M. G. Nambissan and S. K. Pabi: Phys. Rev. B, Vol 63 (2001), p.054107

Google Scholar

[4] D. Toma´nek, S. Mukherjee and K. H. Bennermann: Phys. Rev. B, Vol 28 (1983), p.665

Google Scholar

[5] P. P. Chattopadhyay, S. K. Pabi and I. Manna: Mater. Sci. Eng. A, Vol 304–306 (2001), p.424

Google Scholar

[6] I. Manna, P. P. Chattopadhyay, P. Nandi and F. Banhart: J. Appl. Phys. Vol 93 (2003) , p.1520

Google Scholar

[7] O. Kitakam, H. Saro and Y. Shimada: Phys. Rev. B, Vol 56 (1997) , p.13849

Google Scholar

[8] D. L. Zhang and D. Y. Ying: Materials Letters, Vol 50 (2001) , p.149–153

Google Scholar

[9] K. Potzger, H. Reuther, S. Q. Zhou and A. Mucklich: J. Appl. Phys. Vol 99 (2006), p.08N701

Google Scholar

[10] A. Gabor, Somorjai and Jeong Y. Park: Angew. Chem. Int. Ed. Vol 47 (2008), p.9212

Google Scholar

[11] Xi Shengqi, Zuo Kesheng, Li Xiaogang and Ran Guang: Acta Materialia, Vol 56 (2008), p.6050

Google Scholar

[12] I. Manna, P. P. Chattopadhyay and F. Banhart: Appl. Phys. Lett. Vol 81(2002), p.4136

Google Scholar

[13] J. H. Li, Y. Dai, X. D. Dai, T. L. Wang and B. X. Liu: Comput. Mater. Sci. Vol 43 (2008), p.1207

Google Scholar

[14] Y. J. Li, W. H. Qi, B. Y. Huang and M. P. Wang: Physica B Vol 405 (2010), p.2334

Google Scholar

[15] W. H. Qi: Solid State Commun. Vol 137 (2006), p.536

Google Scholar

[16] C. Kittel: Introduction to Solid State Physics (Wiley, New York, 1996)

Google Scholar

[17] D. G. Pettifor: J. Phys. C, Vol 3 (1970), p.367

Google Scholar

[18] Y. Mokrousov, G. Bihlmayer, S. Blügel, S. Heinze: Phys. Rev. B, Vol 75 (2007), pp.104413-1

Google Scholar

[19] T. Waeckerlé: IEEE Trans. on Magn. Vol 46 (2010), p.326

Google Scholar