Theoretical Study on the Interaction between Shuffle 60° Dislocation and Hexavacancy in Silicon

Article Preview

Abstract:

The interaction of the shuffle 60° dislocation with a regular chain of hexavacancies was investigated via the molecular dynamics simulation with Stillinger-Weber potential. The results show that an attraction exists between the shuffle 60° dislocation and hexavacany. The attraction energy is dependent obviously upon the hexavacancy concentration. The dislocation can overcome the pinning of vacancies under a critical resolved shear stress, and a linear relationship is found between the critical stress and hexavacancy concentration.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 602-604)

Pages:

861-865

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. B. Bolkhovityanov, A. S. Deryabin, A. K. Gutakovskii, et al. J. Appl. Phys. 2004, 96: 7665

Google Scholar

[2] A.P. Knights, R. M. Gwilliam, B. J. Sealy, et al. J. Appl. Phys. 2001, 89:76~79

Google Scholar

[3] B. Pichaud, N. Burle, M. Texier, et al. Phys. Stat. solidi (c), 2009, 6(8): 1827

Google Scholar

[4] S. Duesbery and B. Joos. J. APPl. Phys. 1996,74(4):253~258

Google Scholar

[5] A.T. Blumenau, R. Jones and T. Frauenheim. J. Phys.:Condes. Matter. 2003, 15:2951~2960

Google Scholar

[6] W. Cai, V. Bulatov, J. Chang, et al., Dislocations in solids, 2005(2005) :1~80.

Google Scholar

[7] C. X. Li, Q. Y. Meng, K. Y. Zhong, et al., Phys. Rev. B. 2008, 77(4):045211

Google Scholar

[8] F. H. Stillinger and T. A. Weber, Phys. Rev. B. 1985, 31, 5262

Google Scholar

[9] J.Godet, L. Pizzagalli,S. rochard,et al., J. of Phys.: Cond. Matt. 2003,15:2943

Google Scholar

[10] C. Y. Wang, Z. Wang, Q. Y. Meng, Physica B: Condensed Matter, 2011, 406(3):467

Google Scholar

[11] C. X. Li, Q.Y. Meng, G. Li, et al., Superlattices Microstruct. 2006,40:113.

Google Scholar

[12] M. Parrinello and A. Rahman, Phys. Rev. Lett. 45, 1980, 45:1196-1199.

Google Scholar

[13] J. Hornstra, Journal of Physics and Chemistry of Solids 5 (1-2) (1958) 129

Google Scholar

[14] L. Pizzagalli, J. Godet, S. Brochard, Phys. Rev. Lett. 103 (6) (2009) 065505

Google Scholar

[15] S.K. Estreicher, J.L. Hastings, P.A. Fedders. Appl. Phys. Lett. 1997, 70:432~434

Google Scholar

[16] Bullough R, Newman RC. Rep. Prog. Phys. 1970, 33:101–48.

Google Scholar

[17] Dierk Raabe. Computational Materials Science. New York: Wiley; 1998.

Google Scholar