Microwave-Hydrothermal Synthesis and Characterization of Graphene

Article Preview

Abstract:

Graphene was synthesized by microwave-hydrothermal chemical reduction of graphite oxide using hydrazine hydrate as the reducing agent. Graphene was characterized using X-ray diffraction, UV-visible spectrum, FT-IR spectrum and scanning electron microscopy. Results indicated that the as-prepared graphene was wrinkled and comprised fewer graphenes with a highly crystalline structure.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 602-604)

Pages:

917-920

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Afanasov, V. A. Morozov, A. V. Kepman, S. G. Ionov, A. N. Seleznev, G. V. Tendeloo. Carbon 47(2009)263-70.

DOI: 10.1016/j.carbon.2008.10.004

Google Scholar

[2] P. R. Wallace. Phys Rev 71(1947)622-34.

Google Scholar

[3] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A. A. Firsov, Science 306 (2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[4] F. Schwierz, Nat. Nanotechnol. 5 (2010) 487-496.

Google Scholar

[5] X. C. Dong, Y. M. Shi, W. Huang, P. Chen, L. J. Li, Adv. Mater. 22 (2010)1649-1653.

Google Scholar

[6] Y. X. Huang, X. C. Dong, Y. M. Shi, C. M. Li, L. J. Li, P. Chen, Nanoscale 2 (2010) 1485-1488.

Google Scholar

[7] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Nature 457 (2009) 706-710.

DOI: 10.1038/nature07719

Google Scholar

[8] S.J. Ding, J.S. Chen, D.Y. Luan, F.Y.C. Boey, S. Mdhavi, X.W. Lou, Chem. Commun. 47 (2011) 5780-5782.

Google Scholar

[9] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Nano Lett. 9 (2009) 30-35.

DOI: 10.1021/nl801827v

Google Scholar

[10] X. S. Li, W. W. Cai, J. An, S. Kim, J. Nah, D.X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Science 324 (2009) 1312-1314.

DOI: 10.1126/science.1171245

Google Scholar

[11] X. C. Dong, B. Li, A. Wei, X.H. Cao, M.B.P. Chan, H. Zhang, L.J. Li, W. Huang, P. Chen, Carbon 49 (2011) 2929–2944.

Google Scholar

[12] X. C. Dong, C. Y. Su, W. J. Zhang, J. W. Zhao, Q. D. Ling, W. Huang, P. Chen, L.Z. Li, Phys. Chem. Chem. Phys. 12 (2010) 2164-2169.

Google Scholar

[13] Y. B. KHOLLAM, S. B. DESHPANDE, P. K. KHANNA, P. A. JOY, H. S. POTDAR. Materials Letters 58(2004) 2521-2524.

DOI: 10.1016/j.matlet.2004.03.015

Google Scholar

[14] S. F. LIU, I. R. ABOTHU, S. KOMARNENI. Materials Letters 38(19995) 344-350.

Google Scholar

[15] A. B. CORRADI, F. BONDIOLI, A. M. FERRARI, T. MANFREDINI. Materials Research Bulletin 41(2006)38-44.

Google Scholar

[16] W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80(1958)1339–1339.

Google Scholar

[17] S. Shukla, S. Saxena. Appl Phys Lett 98(2011)3555438.

Google Scholar

[18] D. Y. Lee, Z. Khatun, J. H. Lee, Y. K. Lee, I. In. Biomacromolecules 12(2011)336-41.

Google Scholar