Graphene and Metal Oxide Composites for Supercapacitors

Article Preview

Abstract:

Graphene-metal oxide composites as supercapacitor electrodes combine the large pseudocapacitance of metal oxides with the fascinating electrical and mechanical properties and large surface area of graphene. The synthetic methods for composites are reviewed, including in-siu synthesis, solution mixing, hydrothermal method, microware irradiation and electrochemical deposition. Among these techniques, the hydrothermal method offers an effective and simple way to anchor metal oxides on the 2D graphene sheet uniformly. Consequently, the composites exhibit high capacity, high rate capability and well reversibility, presenting promising prospects as supercapacitor electrode material.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 608-609)

Pages:

1074-1077

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. I. Becker: U. S. Patent 2,800,616. (1957).

Google Scholar

[2] R. Kötz and M. Carlen: Electrochim. Acta, Vol.45 (2000), p.2483.

Google Scholar

[3] B. E. Conway: Electrochemical Supercapacitors (Kluwer Academic/Plenum Publishers, U. S. 1999).

Google Scholar

[4] J. R. Miller and P. Simon: Science, Vol.321 (2008), p.651.

Google Scholar

[5] J. R. Miller and A. F. Burke: Electrochem. Soc. Interf. Spring, Vol. 321 (2008), p.53.

Google Scholar

[6] C. Peng, S. W. Zhang and D. Jewell: Progress in Natural Science, Vol. 18 (2008), p.778.

Google Scholar

[7] M. J. Allen, V. C. Tung and R. B. Kaner: Chem. Rev., Vol. 110 (2010), p.132.

Google Scholar

[8] K. S. Novoselov, A. K. Geim and S. V. Morozov: Science, Vol. 306 (2004), p.666.

Google Scholar

[9] X. L. Li, G.Y. Zhang and X. D. Bai: Nat. Nanotech. , Vol. 3 (2008), p.538.

Google Scholar

[10] M. D. Stoller, S. Park and Y. W. Zhu: Nano Lett. , Vol. 8 (2008), p.3498.

Google Scholar

[11] D. D. Zhao, S. J. Bao and W. J. Zhou: Electrochem.Commun. , Vol. 9 (2007), p.869.

Google Scholar

[12] J. Wang, Z.Gao and Z. S. Li: J. Solid State Electrochem. , Vol. 184 (2011), P. 1421.

Google Scholar

[13] J. Yao, X. P. Shen and B. Wang: Electrochem.Commun. , Vol. 11 (2009), p.1849.

Google Scholar

[14] B. Wang, Y. Wang and J. S. Park: J. Alloys. Compd., Vol. 509 (2011), p.7778.

Google Scholar

[15] Z. S. Wu, D. W. Wang and W. C. Ren: Adv. Funct.Mater. , Vol. 20 (2010), p.3595.

Google Scholar

[16] J. Liu, H. Bai and Y. Wang: Adv. Funct.Mater. , Vol. 20 (2010), p.4175.

Google Scholar

[17] D. Zhou, Q. Y. Cheng and B. H. Han: Carbon, Vol. 49 (2011), p.3920.

Google Scholar

[18] H. W. Wang, Z. A. Hu and Y. Q. Chang: Electrochim. Acta, Vol. 55 (2010), p.8974.

Google Scholar

[19] G. M. Morales, P. Schifani and G. Ellis: Carbon, Vol. 49 (2011), p.2809.

Google Scholar

[20] J. Yan, Z. J. Fan and T. Wei: Carbon, Vol. 48 (2010), p.3825.

Google Scholar

[21] J. Yan, T. Wei and W. M. Qiao: Electrochim. Acta, Vol. 55 (2010), p.6973.

Google Scholar

[22] Q. Cheng, J. Tang and J. Ma: Carbon, Vol. 49 (2011), p.2917.

Google Scholar