Microstructures and Electrochemical Properties of La0.7Ce0.3Ni3.7Co0.7-xAl0.2Mn0.4(Fe0.43B0.57)x (x = 0-0.4) Hydrogen Storage Alloys

Article Preview

Abstract:

X-ray diffraction results indicate that pristine alloy has a single LaNi5 phase and the alloys containing Fe0.43B0.57 consist of the matrix LaNi5 phase and the La3Ni13B2 secondary phase. The abundance of La3Ni13B2 phase increases with increasing x value. Maximum discharge capacity of the alloy electrodes monotonically decreases from 336.1 mAh/g (x = 0) to 281.2 mAh/g (x = 0.4). High-rate dischargeability of the alloy electrodes first increases with increasing x from 0 to 0.20, and then decreases when x increases to 0.4. Cycling stability decreases with increasing x from 0 to 0.4.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 608-609)

Pages:

917-920

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Sakai, H. Yoshinaga, N. Kurigama, H. Ishikawa, Rechargeable hydrogen batteries using rare-earth-based hydrogen storage alloys, J. Alloys Compd. 180 (1992) 37-50.

DOI: 10.1016/0925-8388(92)90361-c

Google Scholar

[2] S. K. Pandey, A. Srivastava and O.N. Srivastava, Improvement in hydrogen storage capacity in LaNi5 through substitution of Ni by Fe, Int. J. Hydrogen Energy 32 (2007) 2461-2465.

DOI: 10.1016/j.ijhydene.2006.12.003

Google Scholar

[3] A. Zuttel, D. Chartouni, K. Gross, N.J.E. Adkins, Relationship between composition, volume expansion and cyclic stability of AB5-type metalhydride electrodes, J. Alloys Compd. 253-254 (1997) 626-628.

DOI: 10.1016/s0925-8388(96)02976-3

Google Scholar

[4] H. Ye, Y.X. Huang, J.X. Chen, H. Zhang, MmNi3.55Co0.75Mn0.4Al0.3B0.3 hydrogen storage alloys for high-power nickel/metal hydride batteries, J. Power Sources 103 (2002) 293-299.

DOI: 10.1016/s0378-7753(01)00869-2

Google Scholar

[5] B. Liu, M. Hu, L. Ji, Y. Fan, Y. Wang, Z. Zhang, A. Li, Phase structure and electrochemical properties of La0.7Ce0.3Ni3.75Mn0.35Al0.25Cu0.75-x(FeB)x alloys, J. Alloys Compd. 516 (2012) 53-57.

DOI: 10.1016/j.jallcom.2011.11.122

Google Scholar

[6] H. Yan, F. Kong, B. Li, J. Li, L. Wang, New La–Fe–B ternary system hydrogen storage alloys Int. J. Hydrogen Energy 35 (2010) 5687-5692.

DOI: 10.1016/j.ijhydene.2010.02.127

Google Scholar

[7] P. Notten, P. Hokkeling, Double-phase hydride forming compounds: A new class of highly electrocatalytic materials. J. Electrochem. Soc. 138 (1991) 1877-1885.

DOI: 10.1149/1.2085893

Google Scholar

[8] G. Zheng, B.N. Popov, R.E. White, Electrochemical determination of the diffusion coefficient of hydrogen through an LaNi4.25Al0.75 electrode in alkaline aqueous solution, J. Electrochem. Soc. 142 (1995) 2695-2698.

DOI: 10.1149/1.2050076

Google Scholar

[9] C. Iwakura, M. Miyamoto, H. Inoue, M. Matsuoka, Y. Fukumoto, Effect of stoichiometric ratio on discharge efficiency of hydrogen storage electrodes, J Alloys Compd. 259 (1997) 132-134.

DOI: 10.1016/s0925-8388(97)00040-6

Google Scholar