Experiments on the Kinetics and Activation Mechanism of CO2 Loaded MEA-MDEA Aqueous Solutions

Article Preview

Abstract:

The solubility and absorption rate of CO2 in monoethanolamine (MEA) promoted N-methyldiethanolamine (MDEA) aqueous solution were measured at normal pressure with temperatures ranging from 303.15-323.15K. The temperature and the mass fraction dependences of the solubility of CO2 and CO2 loading were determined. The influence of the mass fraction of MEA on the absorption rate of CO2 was illustrated.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 610-613)

Pages:

1213-1217

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Nahicenovic, A. John, Energy, 16 (1991) 1347-1377.

Google Scholar

[2] R. Steenevel, B. Berger, T. A. Torp, Chem. Eng. Res. Design, 84 (A9) (2006) 739-763.

Google Scholar

[3] J. Knudsen, J.N. Jensen, P.-J. Vilhelmsen, O. Biede, Energy Procedia, 1 (2009) 783-790.

Google Scholar

[4] L. Raynal, P. A. Bouillon, A. Gomez, P. Broutin, Chem. Eng. J., 171 (3) (2011) 742-752.

Google Scholar

[5] T. Chakravarty, U. K. Phukan, R. H. Weiland, Chem. Eng. Prog., 81 (1985) 32-36.

Google Scholar

[6] A. L. Kohl, R. Nielsen, Gas Purification, 5th Ed, Gulf Publishing: Houston, TX (1997).

Google Scholar

[7] Akanksha, K. K. Pant, V. K. Srivastava, Chem. Eng. J., 133 (1-3) (2007) 229-237.

Google Scholar

[8] M. Navaza, D. G. Diaz, M. D. L. Rubia, Chem. Eng. J., 146 (2009) 184-188.

Google Scholar

[9] M. Ghulam, M. S. Azmi, K. K. Lau, and A. B. Mohamad, J. Chem. Eng. Data, 56 (2011) 2660-2663.

Google Scholar

[10] G. Rochelle, E. Chen, S. Freeman, D. V. Wagener, Q. Xu, A. Voice, Chem. Eng. J., 171 (3) (2011) 725-733.

Google Scholar

[11] A. Samanta, S. S. Bandyopadhyay, J. Chem. Eng. Data, 51 (2006), 467-470.

Google Scholar

[12] S. Bishnoi, G. T. Rochelle, Chem. Eng. Sci., 55 (2000) 5531-5543.

Google Scholar

[13] R. Dugas, G. T. Rochelle, GHGT-9 Conference (2008).

Google Scholar

[14] S. Kadiwala, A. V. Rayer, A. Henni, Fluid Phase Equilibria, 292 (2010) 20-28.

DOI: 10.1016/j.fluid.2010.01.009

Google Scholar

[15] P. W. J. Derks, J. A. Hogendoorn, G. F. Versteeg, J. Chem. Thermodynamics, 42 (2010) 151-163.

Google Scholar

[16] P.W.J. Derks, H.B.S. Dijkstra, J.A. Hogendoorn, G.F. Versteeg, AICHE J. 51 (2005) 2311-2327.

Google Scholar

[17] M. Vahidi, N. S. Matin, M. Goharrokhi, M. H.Jenab, J. Chem. Thermodynamics 41 (2009) 1272-1278

Google Scholar

[18] B.S. Ali, M.K. Aroua, Int. J. Thermophys. 25 (2004) 1863–1870.

Google Scholar

[19] P.-S. Kamps A, J. Xia, G. Maurer, AIChE J. 49 (2003) 2662–2670.

Google Scholar

[20] G.-W. Xu, C.-F. Zhang, A.-J. Qin, W.-H. Gao, H.-B. Liu, Ind. Eng. Chem. Res. 37 (1998) 1473-1477.

Google Scholar

[21] G. Astarita, D. W. Savage, J. M. Longo, Chem. Eng. Sci., 36 (3) (1981) 581-588.

Google Scholar

[22] C. F. Zhang, G. W. Xu, S. J. Qin, Y. W. Wang, J. Chem. Eng. Chin. Univ., 8 (1) (1994) 55-60.

Google Scholar