Nitrate Reduction in an Intensified Electrochemical System: Effects of Different Metallic Particles

Article Preview

Abstract:

The performance of nitrate reduction in an electrochemical system intensified by different metallic particles was evaluated in the present study. In the electrochemical process without metallic particles, the nitrate removal efficiency was found to be 65.7%, while higher nitrate conversion yields of 82.9%, 87.5% and 93.2% were obtained in the developed system in the presence of iron, steel and copper particles, respectively. Moreover, the presence of metallic particles in the electrochemical process significantly reduced 39.3-49.5% of the energy consumptions for nitrate reduction. Mechanisms of the acceleration of nitrate reduction by the three metallic particles were different. Iron and steel particles in the middle of the electric field dissolved and served as electron donors for nitrate reduction, while the copper particles worked as activated metallic catalysts. Taking into account of safety and operating cost, iron was the optimal choice among the three metallic particles studied.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 610-613)

Pages:

1290-1295

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. J. Puckett: Environ. Sci. Technol. Vol. 29 (1995) 408A-414A

Google Scholar

[2] K. P. Cantor: Cancer Causes and Control Vol. 8 (1997) 292-308.

Google Scholar

[3] D. Majumdar and N. Gupta: Indian J. Environ. Health Vol. 42 (1) (2000) 28-39.

Google Scholar

[4] S. R. Carpenter, N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley and V. H. Smith: Ecol. Appl. Vol. 8 (1998) 559-568.

Google Scholar

[5] World Health Organization: Rolling revision of the WHO guidelines for Drinking-water quality, Nitrates and nitrites in drinking water, World health Organization, 2004.

DOI: 10.1002/9780470172971.app2

Google Scholar

[6] S. Samatya, N. Kabay, Ü. Yüksel, M. Rda and M. Yüksel: React. Funct. Polym. Vol. 66 (2006) 1206-1214.

Google Scholar

[7] Y. Fernández-Nava, E. Maranon, J. Soons and L. Castrillón: Bioresour. Technol. Vol. 99 (2008) 7976-7981.

Google Scholar

[8] S. Ghafari, M. Hasan and M. K. Aroua: Bioresour. Technol. Vol. 99 (2007) 3965-3974.

Google Scholar

[9] M. Li, C. P. Feng, Z. Y. Zhang, X. H. Lei, R. Z. Chen and N. Sugiura: J. Hazard. Mater. Vol. 171 (2009) 724-730.

Google Scholar

[10] M. Li, C. P. Feng, Z. Y. Zhang and N. Sugiura: Electrochim. Acta Vol. 54 (2009) 4600-4606.

Google Scholar

[11] D. Reyter, D. Bélanger and L. Roué: Electrochim. Acta Vol. 53 (2008) 5977-5984.

Google Scholar

[12] H. Li, J. Q. Chambers and D. T. Hobbs: J. Appl. Electrochem. Vol. 18 (1988) 454-458.

Google Scholar

[13] A. C. A. De Vooys, R. A. Van Santen and J. A. R. Van Veen: J. Mol. Catal. A Chem. Vol. 154 (2000)203-215.

Google Scholar

[14] K. W. Kim, Y. J. Kim, I. T. Kim, G. I. Park and E. H. Lee: Water Res. Vol. 40 (2006) 1431-1441.

Google Scholar

[15] J. Chen, H. Shi and J. Lu: J. Appl. Electrochem. Vol. 37 (2007) 1137–1144.

Google Scholar

[16] K. W. Kim, Y. J. Kim, I. T. Kim, G. I. Park and E. H. Lee: Electrochim. Acta Vol. 50 (2005) 4356-4364.

Google Scholar

[17] L. Szpyrkowicz, S. Daniele, M. Radaelli and S. Specchia: Appl. Catal. B: Environ. Vol. 66 (2006) 40–50.

Google Scholar

[18] D. Reyter, D. Bélanger and L. Roué: Water Res. Vol. 44 (2010) 1918-1926.

Google Scholar

[19] APHA, AWWA, WPCF: Standard methods for the examination of water and wastewater, American Public Henlth Associction, Washington, DC, USA, 1998.

Google Scholar

[20] S. H. Lin and C. L. Wu: Water Res. Vol. 30 (1996), 715-721.

Google Scholar

[21] A. G. Vlyssides, P. K. Karlis, N. Rori and A. A. Zorpas:J. Hazard. Mater. Vol. 95 (2002) 215-226.

Google Scholar

[22] G. C. C. Yang and H. L. Lee: Water Res. Vol. 39 (2005) 884-894.

Google Scholar

[23] C. P. Huang, H. W. Wang and P. C. Chiu: Water Res. Vol. 32 (1998) 2257-2264.

Google Scholar

[24] G. E. Badea: Electrochim. Acta Vol. 54 (2009) 996-1001.

Google Scholar

[25] WHO, Water Sanitation and Health (WSH): Guidelines for Drinking-Water Quality, 3 rd ed World Health Organization, Geneva, Switzerland, 2004.

Google Scholar