A Review on CO2 Capture Using Membrane Gas Absorption Technology

Article Preview

Abstract:

Membrane gas absorption technology is a promising technology for CO2 removal from flue gases produced by fossil fuels combustion, which has the potential of enhancing the separation efficiency and reducing the costs associated with CO2 capture. In the present paper, important aspects of CO2 removal by membrane gas absorption technology, including liquid absorbents, membrane materials, membrane-absorbent compatibility, membrane wetting and corresponding solutions have been reviewed. Furthermore, future potential in research and development of gas-liquid membrane contactors for CO2 removal has also been briefly discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 616-618)

Pages:

1541-1545

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Klaassen, P.H. M Feron and A.E. Jansen: Chem. Eng. Res. Des. Vol. 83 (2005), p.234.

Google Scholar

[2] S. Ma'mun, H.F. Svendsen, K.A. Hoff and O. Juliussen: Energ. Convers. Manage. Vol. 48 (2007), p.251.

Google Scholar

[3] A.P. Korikov and K.K. Sirkar: J. Membr. Sci. Vol. 246 (2005), p.27.

Google Scholar

[4] R. Wang, D.F. Li and D.T. Liang: Chem. Eng. Process. Vol. 43 (2004), p.849.

Google Scholar

[5] G. Satori and D. W. Savage: Ind. Eng. Chem. Fundam. Vol. 22 (1983), p.239.

Google Scholar

[6] J.G. Lu, Y.F. Zheng, M.D. Cheng and L.J. Wang: J. Membr. Sci. Vol. 289 (2007), p.138.

Google Scholar

[7] J.G. Lu, H. Zhang, M.D. Cheng and L.J. Wang: J. Fuel Chem. Tech. Vol. 37 (2009), p.77.

Google Scholar

[8] Y.X. Lv, X.H. Yu, S.T. Tu, J.Y. Yan and E. Dahlquist: J. Membr. Sci. Vol. 362 (2010), p.444.

Google Scholar

[9] P.S. Kumar, J.A. Hogendoorn, P.H.M. Feron and G.F. Versteeg: Chem. Eng. Sci. Vol. 57 (2002), p.1639.

Google Scholar

[10] P.H.M. Feron and A.E. Jensen: Sep. Purif. Technol. Vol. 27 (2002), p.231.

Google Scholar

[11] S. Khaisri, D. deMontigny, P. Tontiwachwuthikul and R. Jiraratananon: Sep. Purif. Technol. Vol. 65 (2009), p.290.

Google Scholar

[12] F. Porcheron and S. Drozdz S: Chem. Eng. Sci. Vol. 64 (2009), p.265.

Google Scholar

[13] A. Mansourizadeh: Chem. Eng. Res. Des. Vol. 90 (2012), p.555.

Google Scholar

[14] A.F. Julianna, E.K. Sandra, M.P. Jilska and W.S. Geoff: J. Membr. Sci. Vol. 318 (2008), p.107.

Google Scholar

[15] N. Nishikawa, M. Ishibashi, H. Ohta, N. Akutsu, H. Matsumoto, T. Kamata and H. Kitamura: Energ. Convers. Manage. Vol. 36 (1995), p.415.

Google Scholar

[16] S. Koonaphapdeelert, Z.T. Wu and K. Li: Chem. Eng. Sci., 64 (2009), p.1.

Google Scholar

[17] Y.X. Lv, X.H. Yu, S.T. Tu, J.Y. Yan and E. Dahlquist: Appl. Energ. Vol. 97 (2012), p.283.

Google Scholar

[18] H.Y. Zhang, R. Wang, D.T. Liang and J.H. Tay: J. Membr. Sci. Vol. 308 (2008), p.162.

Google Scholar

[19] S.P. Yan, M.X. Fang, W.F. Zhang, S.Y. Wang, Z.K. Zu, Z.Y. Luo and K.F. Cen: Fuel Process Tech. Vol. 88 (2007), p.501.

Google Scholar

[20] Y.X. Lv, X.H. Yu, J.J. Jia, S.T. Tu, J.Y. Yan and E. Dahlquist: Appl. Energ. Vol. 90 (2012), p.167.

Google Scholar

[21] V.Y. Dindore, D.W.F. Brilman, P.H.M. Feron and G.F. Versteeg: J. Membr. Sci. Vol. 235 (2004), p.99.

Google Scholar