Asymptotic Behavior for Nonoscillatory Solutions of Second Order Nonlinear Functional Differential Equation

Article Preview

Abstract:

This paper studied the asymptotic behavior of a class of nonlinear functional differential equations by using the Bellman-Bihari inequality. We obtain results which extend and complement those in references. The results indicate that all non-oscillatory continuable solutions of equation are asymptotic to at+b as under some sufficient conditions, where a,b are real constants. An example is provided to illustrate the application of the results.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 616-618)

Pages:

2137-2141

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.P. Rogovchenko and Y.V. Rogovchenko: Portugal. Math. Vol. 57(2000), pp.17-33.

Google Scholar

[2] D.S. Cohen: Proc.Amer.Math.Soc. Vol. 18 (1967), pp.607-609.

Google Scholar

[3] O.Lipovan: Glasgow.Math.J. Vol. 45 (2003), pp.179-187.

Google Scholar

[4] O.G. Mustafa and Y.V. Rogovchenko: Nonlinear Analysis Vol.51(2002), pp.339-368.

Google Scholar

[5] F.M. Dnanan: J.Math.Anal.Appl. Vol.108(1990), pp.383-386.

Google Scholar

[6] M.Naito: Trans.Amer.Math.Soc. Vol.282(1984) , pp.577-588.

Google Scholar

[7] O.G. Mustafa Y.V. Rogovchenko: Appl.Math.Lett. Vol.19(2006), pp.849-853.

Google Scholar

[8] R.P. Agarwal, S.Djebali, T.Moussaoul, O.G. Mustafa: J.Comp. Appl.Math.Vol.202(2007), pp.352-376.

Google Scholar

[9] J.Dzurina: Archivum Mathematicum. Vol.38(2002), pp.319-325.

Google Scholar