Oxygen Diffusivity of La0.6Sr0.4Co0.2Fe0.8O3-δ Perovskite Oxide

Article Preview

Abstract:

La0.6Sr0.4Co0.2Fe0.8O3-δ composite oxide was prepared and characterized. Dilatometer and four-probe DC were exploited to investigate the thermal expansion and electrical conductivity, respectively. The thermal expansion curve was linear, but it became steeper at the high temperature region, as a result of the loss of lattice oxygen and the formation of oxygen vacancies. The conductivity increased with temperature up to about 600oC, and then decreased due to the loss of lattice oxygen. The maximum conductivity was more than 300 S cm-1. The chemical diffusion coefficient in La0.6Sr0.4Co0.2Fe0.8O3-δ was estimated by analyzing the conductivity relaxation behavior. The relaxation process of the conductivity change for La0.6Sr0.4Co0.2Fe0.8O3-δ was traced as a function of time, at a fixed temperature. It was found that the chemical diffusion coefficients measured at temperatures 720-770oC vary from 710-8 to 110-7 cm2 S-1. The activation energy for oxygen diffusion in La0.6Sr0.4Co0.2Fe0.8O3-δ, derived from the chemical diffusion coefficient is 40.8±3.6 kJ mol-1.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 616-618)

Pages:

633-637

Citation:

Online since:

December 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Stephen J. Skinner, International Journal of Inorganic Materials, 3 (2001) 113-121.

Google Scholar

[2] N.T. Hart, N.P. Brandon, M.J. Day, N. Lapena-Rey, J. Powder Sources, 106 (2002) 42-50.

Google Scholar

[3] Masatoshi Katsuki, Shaorong Wang, Masayuki Dokiya, Takuya Hashimoto, Solid State Ionics, 156 (2003) 453-461.

Google Scholar

[4] Julia. Bahteeva, Ilia A. Leonidov, Mikhail V. Patrakeev, Edward B. Miberg, Victor L. Kozhevnikov, Kenneth R. Poeppelmeier, J. Solid State Electrochem, (2004) 8: 578-584.

DOI: 10.1007/s10008-003-0486-5

Google Scholar

[5] L-W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sarlin, S.R. Sehlin, Solid State Ionics, 76 (1995) 259-271.

Google Scholar

[6] L-W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sarlin, S.R. Sehlin, Solid State Ionics, 76 (1995) 275.

Google Scholar

[7] W. Preis, E. Bucher, W. Sitte, J. Power Sources, 106 (2002) 116-121.

Google Scholar

[8] H. J. M. Bouwmeester, M. W. Fen Otter, B. A. Boukamp, J. State Electrochem, (2004) 8: 599-605.

Google Scholar

[9] W. Preis, E. Bucher, W.Sitte, Solid State Ionics, 175 (2004) 393-397.

Google Scholar

[10] B. Ma, U. Balachandran, J.-H. Park, C.U. Segre, Solid State Ionics, 83 (1996) 65-71.

Google Scholar

[11] Z.P. Shao, W.S. Yang, Y. Cong, H. Dong, J.H. Tong, G.X. Xiong, J. Membr. Sci, 172 (2000) 177-188.

Google Scholar

[12] Z.P. Shao, G.X. Xing, Y. Cong, W.S. Yang, J. Membr. Sci, 164 (2000)167-176.

Google Scholar

[13] Y. Teraoka, N. Yoshimatsu, N. Yamazoe and T. Seiyama, Chem. Lett, (1984) 893-896.

Google Scholar

[14] G.Ch. Kostogloudis, Ch. Ftikos, Solid State Ionics, 126 (1999) 143-151

DOI: 10.1016/s0167-2738(99)00230-1

Google Scholar

[15] J.A. Lane, S.J. Benson, D. Waller, J.A. Kilner, Solid State Ionics, 121 (1999) 201-208.

Google Scholar

[16] Teruhisa Horita, Katsuhiko Yamaji, Natsuko Sakai, YuepingXiong, Tohru Kato, Harumi Yokokawa, Tatsuya Kawada, J. Power Sources, 106 (2002) 224-230.

DOI: 10.1016/s0378-7753(01)01017-5

Google Scholar

[17] B. Ma, J. –H. Park, and U. Balachandran, J. Electrochem. Soc, 144 (1997) 2816-2823.

Google Scholar