Studies of Cell Growth on TiO2 Nanotubes

Article Preview

Abstract:

The in vitro cell response was investigated on flat Ti surface vs nanostructured TiO2 nanotube surface. The titanium dioxide nanotube layers were prepared by electrochemical anodization of Ti in ethylene glycol, 5 wt% NH4F and 1ml H2O2. The nanotube layered structure and morphology were characterized using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The diameter and the length of the nanotubes are found to increase with anodization voltage. Hs27 and breast cancer cell line MCF-7 were used for cell interaction studies. Different surfaces of titanium show variation in term of growth and viability of cells. Different cell type also show different cellular responses to these surfaces. Titanium nanotube with tube diameter 90 nm promoted normal cell adherence and spreading but killed the cancer cells. The detail of the observation is discussed thoroughly in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

325-329

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Swami, Z. Cui and L. S. Nair: Journal of Heat Transfer Vol. 133 (2011).

Google Scholar

[2] K. Burns, C. Yao and T. J. Webster: Journal of Biomedical Materials Research Part A Vol. 88a (2008), p.561.

Google Scholar

[3] K. Das, S. Bose and A. Bandyopadhyay: Journal of Biomedical Materials Research Part A Vol. 90 (2009), p.225.

Google Scholar

[4] G. E. Aninwene, C. Yao and T. J. Webster: International Journal of Nanomedicine Vol. 3 (2008), p.257.

Google Scholar

[5] C. Lee, C. Hong, H. Kim, J. Kang and H. M. Zheng: Photochemistry and Photobiology Vol. 86 (2010), p.981.

Google Scholar

[6] M. Kalbacova, J. M. Macak, F. Schmidt-Stein, C. T. Mierke and P. Schmuki: Physica Status Solidi (RRL) Vol. 4 (2008), p.194.

DOI: 10.1002/pssr.200802080

Google Scholar

[7] S. -H. Oh, R. R. F. Nes, C. Daraio, L. -H. Chen and S. Jin: Biomaterials Vol. 26 (2005), p.4938.

Google Scholar

[8] S. Oh, C. Daraio, L. -H. Chen, T. R. Pisanic, R. R. Fin and S. Jin: Journal of Biomedical Materials Research Part A Vol. 78A (2006), p.97.

Google Scholar

[9] K. C. Popat, L. Leoni, C. A. Grimes, T. A. Desai: Biomaterials Vol. 28 (2007), p.3188.

Google Scholar

[10] S. Oh, K. S. Brammer, K. -S. Moon, J. -M. Bae and S. Jin: Materials Science & Engineering C Vol. 31 (2011), p.873.

Google Scholar

[11] J. Park, S. Bauer, K. V. D. Mark and P. Schmuki: Nano Letters Vol. 7 (2007), p.1686.

Google Scholar

[12] K. S. Brammer, S. Oh, C. J. Cobb, L. M. Bjursten, H. V. D. Heyde and S. Jin: Acta Biomaterialia Vol. 5 (2009), p.3215.

DOI: 10.1016/j.actbio.2009.05.008

Google Scholar

[13] K. S. Brammer, S. Oh, J. O. Gallagher and S. Jin: Nano Letters Vol. 8 (2008), p.786.

Google Scholar

[14] J. Park, S. Bauer, P. Schmuki and K. V. D. Mark: Nano Letters Vol. 9 (2009), p.3157.

Google Scholar

[15] L. Peng, M. L. Eltgroth, T. J. Latempa, C. A. Grimes and T. A. Desai: Biomaterials Vol. 30 (2009), p.1268.

Google Scholar

[16] D. M. Brunette, P. Tengvall, M. Textor and P. Thomsen: (2001) Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses And Medical Applications.

DOI: 10.1007/978-3-642-56486-4

Google Scholar