Research Progress of Application of Porous Polymer in Energy Storage

Article Preview

Abstract:

Nowadays, one of the research emphases in clean energy field is to apply porous polymer as energy storage media to capture and save abundant energy. Researches in this area focus on theoretical methods and syntheses of new materials. Researches on theoretical methods include investigations on mechanical strength, characteristic of heat and mass transfer, internal structure and hydrophilicity of materials using mathematical, physical and chemical methods. Syntheses of new materials include synthesis of porous carbon and porous metal organic frameworks materials and construction of battery structure use polymer organics as matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-30

Citation:

Online since:

December 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Jiang JW, Babarao R, Hu ZQ, Molecular simulations for energy, environmental and pharmaceutical applications of nanoporous materials: from zeolites, etal-organic frameworks to protein crystals, Chemical Society Reviews. 40 (7) (2011) 3599-3612.

DOI: 10.1039/c0cs00128g

Google Scholar

[2] Thi X T Sayle, Phuti E. Ngoepe, Dean C. Sayle, Simulating mechanical deformation in nanomaterials with application for energy storage in nanoporous architectures, ACS Nano. 3 (10) (2009) 3308-3314.

DOI: 10.1021/nn9009592

Google Scholar

[3] Hiroyasu Furukawa, Omar M. Yaghi, Storage of hydrogen, Methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications, J. Am. Chem. Soc. 131 (25) (2009) 8875-8883.

DOI: 10.1021/ja9015765

Google Scholar

[4] Lilin He, Suresh M. Chathoth, Yuri B, Melnichenko, Small-angle neutron scattering characterization of the structure of nanoporous carbons for energy-related applications, Microporous and Mesoporous Materials. 149 (2012) 46-54.

DOI: 10.1016/j.micromeso.2011.08.035

Google Scholar

[5] Yasutaka Nishida, Satoshi Itoh, A modeling study of porous composite microstructures for solid oxide fuel cell anodes, Electrochimica Acta. 56 (7) (2011) 2792-2800.

DOI: 10.1016/j.electacta.2010.12.055

Google Scholar

[6] M Maidhily, N Rajalakshmi, K S Dhathathreyan, Electrochemical impedance diagnosis of micro porous layer in polymer electrolyte membrane fuel cell electrodes, International Journal of Hydrogen Energy. 36 (19) 2011 12352-12360.

DOI: 10.1016/j.ijhydene.2011.06.084

Google Scholar

[7] Naiqing Zhang, Juan Li, Dan Ni, et al., Preparation of honeycomb porous La0.6Sr0.4Co0.2Fe0.8O3 −δ–Gd0.2Ce0.8O2−δ composite cathodes by breath figures method for solid oxide fuel cells, Applied Surface Science. 258 (1) (2011) 50-57.

DOI: 10.1016/j.apsusc.2011.08.004

Google Scholar

[8] Joshua S. Preston, Richard S. Fu, Ugur Pasaogullari, et al., Consideration of the role of micro-porous layer on liquid water distribution in polymer electrolyte fuel cells, J. Electrochem. Soc. 158 (2) (2011) B239-B246.

DOI: 10.1149/1.3525626

Google Scholar

[9] Yun Wang, Porous-Media Flow Fields for Polymer Electrolyte Fuel Cells: I. Low Humidity Operation, J. Electrochem. Soc. 156 (10) (2009) B1124-B1133.

DOI: 10.1149/1.3183781

Google Scholar

[10] Yun Wang, Porous-Media Flow Fields for Polymer Electrolyte Fuel Cells: II. Analysis of Channel Two-Phase Flow, J. Electrochem. Soc. 156 (10) (2009) B1134-B1141.

DOI: 10.1149/1.3183785

Google Scholar

[11] Minjeh Ahna, Yong-Hun Chob, Yoon-Hwan Choa, et al., Influence of hydrophilicity in micro- porous layer for polymer electrolyte membrane fuel cells, Electrochimica Acta. 56 (5) 2011 2450-2457.

DOI: 10.1016/j.electacta.2010.11.063

Google Scholar

[12] S Pulloor Kuttanikkad, M Prat, J. Pauchet, Pore-network simulations of two-phase flow in a thin porous layer of mixed wettability: Application to water transport in gas diffusion layers of proton exchange membrane fuel cells, Journal of Power Sources. 196 (3) (2011) 1145-1155.

DOI: 10.1016/j.jpowsour.2010.09.029

Google Scholar

[13] Martin Oschatz, Emanuel Kockrick, Marcus Rose, et al., A cubic ordered, mesoporous carbide- derived carbon for gas and energy storage applications, Carbon. 48 (2010) 3987-3992.

DOI: 10.1016/j.carbon.2010.06.058

Google Scholar

[14] Jin Kim, Nicolas Cunningham, Development of porous carbon foam polymer electrolyte membrane fuel cell, Journal of Power Sources. 195 (8) (2010) 2291-2300.

DOI: 10.1016/j.jpowsour.2009.10.053

Google Scholar

[15] Du He Yun, Wang Chen Hao, Hsu Hsin Cheng, et al., High performance of catalysts supported by directly grown PTFE-free micro-porous CNT layer in a proton exchange membrane fuel cell, Journal of Materials Chemistry. 21 (8) (2011) 2512-2516.

DOI: 10.1039/c0jm03215h

Google Scholar

[16] Ma TY, Yuan ZY, Metal phosphonate hybrid mesostructures: Environmentally friendly multifunctional materials for clean energy and other applications, Chemsuschem. 4 (10) (2011) 1407-1419.

DOI: 10.1002/cssc.201100050

Google Scholar

[17] Prabal Sapkota, Honggon Kim, An experimental study on the performance of a zinc air fuel cell with inexpensive metal oxide catalysts and porous organic polymer separators, Journal of Industrial and Engineering Chemistry. 16 2010 39-44.

DOI: 10.1016/j.jiec.2010.01.024

Google Scholar

[18] Tienhoa Nguyen, XinWang, Multifunctional composite membrane based on a highly porous polyimide matrix for direct methanol fuel cells, Journal of Power Sources. 195 2010 1024-1030.

DOI: 10.1016/j.jpowsour.2009.08.049

Google Scholar

[19] Zhi Ming, A new style nano-compound polymer material for H2 storage, World Plastic. 29 (7) (2011) 70.

Google Scholar

[20] Sung Hyun Yuna, Jung Je Wooa, Seok Jun Seoa, et al., Sulfonated poly(2,6-dimethyl-1,4- phenylene oxide) (SPPO) electrolyte membranes reinforced by electrospun nanofiber porous substrates for fuel cells, Journal of Membrane Science. 367 ( 1-2) (2011) 296-305.

DOI: 10.1016/j.memsci.2010.11.017

Google Scholar

[21] A. Eguizábal, J Lemus, M Urbiztondo,et al., Novel hybrid membranes based on polybenzimidazole and ETS-10 titanosilicate type material for high temperature proton exchange membrane fuel cells: A comprehensive study on dense and porous systems, Journal of Power Sources. 196 (21) 2011 8994-9007.

DOI: 10.1016/j.jpowsour.2011.03.006

Google Scholar