[1]
J. Shibata, T. Goto and M. Yamamoto: Characteristics of air flow around a grinding wheel and their availability for assessing the wheel wear, CIRP Vol. 31/1 (1982), pp.233-238.
DOI: 10.1016/s0007-8506(07)63304-6
Google Scholar
[2]
S. Alenius and J. Johansson: Air flow and particle distribution around a rotating grinding wheel, Aerosol Sc. and Tech. Vol. 25/2 (1996), pp.121-133.
DOI: 10.1080/02786829608965385
Google Scholar
[3]
T.P. Davies and R.G. Jackson: Air flow around grinding wheels, Precision Engg. Vol. 3/2(1981), pp.225-228.
DOI: 10.1016/0141-6359(81)90097-0
Google Scholar
[4]
B. Mandal, S. Majumder, S. Das and S. Banerjee: Predictive modeling and Investigation on the formation of stiff air-layer around the grinding wheel. Adv. Mat. Res. Vol. 83-86(2010), pp.654-659.
DOI: 10.4028/www.scientific.net/amr.83-86.654
Google Scholar
[5]
B. Mandal, S. Majumder, S. Das and S. Banerjee: Formation of a significantly less stiff air-layer around a grinding wheel pasted with rexine leather. Int. J Precision Tech. Vol. 2 /1(2011), pp.12-20.
DOI: 10.1504/ijptech.2011.038106
Google Scholar
[6]
T. Akiyama, J. Shibata and S. Yonetsu: Behaviour of grinding fluid in the gap of the contact area between a grinding wheel and a workpiece. Proc. of 5th Int. Conf. on Prod. Engg., Tokyo (1984), pp.55-57.
Google Scholar
[7]
F. Engineer, C. Guo and S. Malkin: Experimental measurement of fluid flow through the grinding zone. Trans. of the ASME, J Engg. for Industry Vol. 114(1992), pp.61-66.
DOI: 10.1115/1.2899759
Google Scholar
[8]
R.S. Sarmacharya, M.N. George and S. Das: On the grinding wheel performance through minor wheel modification. Proc. of 18th AIMTDR Conf., Kharagpur, India (1998), pp.156-161.
Google Scholar
[9]
S. Das, A.O. Sharma, S.S. Singh and S.V. Nahate: Grinding performance through effective application of grinding fluid. Proc. of Int. Conf. on Manuf., Dhaka (2000), pp.231-239.
Google Scholar
[10]
S. Putatunda, A.K. Bandyopadhyay, T. Bose, S. Sarkar and S. Das: On the effectiveness of applying grinding fluid in surface grinding. Proc. of National Seminar on Emerging Trends in Manuf., Banaras, India (2002), pp.182-187.
Google Scholar
[11]
J.A. Webster, C. Cui and Jr.R.B. Mindek: Grinding fluid application system design. CIRP Vol. 44/1(1995), pp.333-338.
DOI: 10.1016/s0007-8506(07)62337-3
Google Scholar
[12]
S. Banerjee, S. Ghosal and T. Dutta: Development of simple technique for improving the efficacy of fluid flow through the grinding zone, J Mat. Proc. Tech. Vol. 197(1-3) (2008), pp.306-313.
DOI: 10.1016/j.jmatprotec.2007.06.045
Google Scholar
[13]
B. Mandal, R. Singh, S. Das and S. Banerjee: Development of a grinding fluid delivery technique and its performance evaluation, Mat. and Manuf. Proc. Vol. 27/4(2012), pp.436-442.
DOI: 10.1080/10426914.2011.585487
Google Scholar
[14]
B. Mandal, R. Singh, S. Das and S. Banerjee: Improving grinding performance by controlling air flow around a grinding wheel, Int. J Mach. Tools & Manuf. Vol. 51(2011), pp.670-676.
DOI: 10.1016/j.ijmachtools.2011.06.003
Google Scholar
[15]
S. Ebbrell, N.H. Woolley, Y.D. Tridimas, D.R. Allanson and W.B. Rowe: The effect of cutting fluid application methods on the grinding process, Int. J Mach. Tools & Manuf. 40(2000), pp.209-223.
DOI: 10.1016/s0890-6955(99)00060-7
Google Scholar
[16]
J.A. Kovach and S. Malkin: Thermally induced grinding damage in superalloy materials, ClRP Vol. 37/1(1988), p.309–313.
DOI: 10.1016/s0007-8506(07)61642-4
Google Scholar
[17]
S. Dasgupta, M. Kirtonia, A.K. Nandy, S. Ghosh and A.B. Chattopadhyay: Effects of applying soluble oil, sodium nitrite and liquid nitrogen on grindability of Inconel 718, Proc. of 20th AIMTDR Conf., Ranchi, India (2002), pp.104-110.
Google Scholar
[18]
F. Pusaveca, H. Hamdi, J. Kopac and I.S. Jawahir: Surface integrity in cryogenic machining of nickel based alloy-Inconel718, J Mat. Proc. Tech. Vol. 211(2011), pp.773-783.
DOI: 10.1016/j.jmatprotec.2010.12.013
Google Scholar