Searching for a Pareto Optimal Solution Set of EDM Responses Applying Multi-Objective Simulated Annealing on RSM Model

Article Preview

Abstract:

Simultaneous optimization of conflicting type responses like material removal rate (MRR) and average surface roughness (Ra) in stochastic type electrical discharge machining (EDM) process is a matter of concern to the process engineers. In this paper, EDM is first modeled by response surface methodology (RSM). Current setting, pulse on time and pulse off time were taken as the input parameters while material removal rate and average surface roughness as the responses. Multi-objective simulated annealing (MOSA) is then applied on these models. Pareto optimal solution set is thus developed. It would assist a process engineer to take decision regarding the optimal setting of the process parameters for a specific need-based requirement.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 622-623)

Pages:

51-55

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. H. Ho, S. T. Newman, State of the art electrical discharge machining (EDM), International Journal of machine tools and Manufacture 43 (2003) 1287-1300.

DOI: 10.1016/s0890-6955(03)00162-7

Google Scholar

[2] M. Kunieda, B. Lauwers, K. P. Rajurkar, B. M. Schumacher, Advancing EDM through fundamental insight of the process, Annals of the CIRP 54(2) (2005) 599-622.

DOI: 10.1016/s0007-8506(07)60020-1

Google Scholar

[3] N. M. Abbas, D. G. Solomon, M. F. Bahari, A review on current research trends in electrical discharge machining, International Journal of machine tools and Manufacture 47(7-8) (2007) 1214-1228.

DOI: 10.1016/j.ijmachtools.2006.08.026

Google Scholar

[4] D. K. Panda, R. K. Bhoi, Artificial neural network prediction of material removal rate in electro-discharge machining, Materials and Manufacturing Processes 20 (2005) 645-672.

DOI: 10.1081/amp-200055033

Google Scholar

[5] P. Saha, A. Singha, S. K. Pal, P. Saha, Soft computing models based prediction of cutting speed and surface roughness in wire electro-discharge machining of tungsten carbide cobalt composite, International Journal of Advanced Manufacturing Technology 39(1-2) (2008).

DOI: 10.1007/s00170-007-1200-z

Google Scholar

[6] S. S. Habib, Study of the parameters in electrical discharge machining through response surface methodology approach, Applied Mathematical Modelling 33 (2009) 4397-4407.

DOI: 10.1016/j.apm.2009.03.021

Google Scholar

[7] S. Banerjee, D. Mahapatro, S. Dubey, Some study on electrical discharge machining of ({WC+TiC+TaC/NbC}–Co) cemented carbide, International Journal of Advanced Manufacturing Technology 43 (2009) 1177-1188.

DOI: 10.1007/s00170-008-1796-7

Google Scholar

[8] S. Kuriakose, M. S. Shunmugam, Multi-objective optimization of wire-electro discharge machining process by non-dominated sorting genetic algorithm, Journal of Materials Process Technology 170 (2005) 133-141.

DOI: 10.1016/j.jmatprotec.2005.04.105

Google Scholar

[9] D. Mandal, S. K. Pal, P. Saha, Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II, Journal of Materials Process Technology 186(1-3) (2007).

DOI: 10.1016/j.jmatprotec.2006.12.030

Google Scholar

[10] S. W. Lin, T. Y. Tseng, S. Y. Chou, S. C. Chen, A simulated annealing based approach for simultaneous parameter optimization and feature selection of back-propagation networks, Expert Systems with Applications, 34 (2008) 1491-1499.

DOI: 10.1016/j.eswa.2007.01.014

Google Scholar