Researches on Preparation of Photosan Loaded Magnetic Silica Anoparticles and their Anti-Tumor Effects in Photodynamic Therapy

Article Preview

Abstract:

Photodynamic therapy (PDT) is an effective, noninvasive and nontoxic therapeutics for cancer and some other diseases. It is becoming a alternative of traditional therapeutics for cancers. But the efficacy of PDT was restricted by insufficient selectivity and low solubility. In this study, novel multifunctional silica-based magnetic nanoparticles were prepared as targeting drug delivery system to achieve higher specificity and better solubility. Haematoporphyrin derivative (photosan) was used as photosensitizer. Magnetite nanoparticles (Fe3O4) and photosan were incorporated in silica nanoparticles by microemulsion and sol-gel methods. The prepared nanoparticles were characterized by X-ray diffraction, and transmission electron microscopy. The nanoparticles possessed good biocompatibility and could cause remarkable photodynamic anti-tumor effects. These suggested that photosan-Fe3O4 nanoparticles had great potential as effective drug delivery system in targeting photodynamic therapy.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 622-623)

Pages:

821-826

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.A. Goff, J. Blake, M.P. Bamberg and T. Hasan: Treatment of ovarian cancer with photodynamic therapy and immunoconjugates in a murine ovarian cancer model. Br J Cancer, 1996. 74(8): pp.1194-8.

DOI: 10.1038/bjc.1996.516

Google Scholar

[2] R. Ideta, F. Tasaka, W.D. Jang, N. Nishiyama, G.D. Zhang, A. Harada, Y. Yanagi, Y. Tamaki, T. Aida and K. Kataoka: Nanotechnology-based photodynamic therapy for neovascular disease using a supramolecular nanocarrier loaded with a dendritic photosensitizer. Nano Lett, 2005. 5(12): pp.2426-31.

DOI: 10.1021/nl051679d

Google Scholar

[3] N.S. Soukos, M.R. Hamblin, S. Keel, R.L. Fabian, T.F. Deutsch and T. Hasan: Epidermal growth factor receptor-targeted immunophotodiagnosis and photoimmunotherapy of oral precancer in vivo. Cancer Res, 2001. 61(11): pp.4490-6.

Google Scholar

[4] J. Moan and K. Berg: Photochemotherapy of cancer: experimental research. Photochem Photobiol, 1992. 55(6): pp.931-48.

DOI: 10.1111/j.1751-1097.1992.tb08541.x

Google Scholar

[5] M. Soncin, L. Polo, E. Reddi, G. Jori, M.E. Kenney, G. Cheng and M.A. Rodgers: Effect of the delivery system on the biodistribution of Ge(IV) octabutoxy-phthalocyanines in tumour-bearing mice. Cancer Lett, 1995. 89(1): pp.101-6.

DOI: 10.1016/0304-3835(95)90164-7

Google Scholar

[6] Y.N. Konan, R. Gurny and E. Allemann: State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B, 2002. 66(2): pp.89-106.

Google Scholar

[7] J. Leroux, E. Roux, D. Le Garrec, K. Hong and D.C. Drummond: N-isopropylacrylamide copolymers for the preparation of pH-sensitive liposomes and polymeric micelles. J Control Release, 2001. 72(1-3): pp.71-84.

DOI: 10.1016/s0168-3659(01)00263-2

Google Scholar

[8] L. Polo, G. Bianco, E. Reddi and G. Jori: The effect of different liposomal formulations on the interaction of Zn(II)-phthalocyanine with isolated low and high density lipoproteins. Int J Biochem Cell Biol, 1995. 27(12): pp.1249-55.

DOI: 10.1016/1357-2725(95)00107-z

Google Scholar

[9] C.M. Peterson, J.M. Lu, Y. Sun, C.A. Peterson, J.G. Shiah, R.C. Straight and J. Kopecek: Combination chemotherapy and photodynamic therapy with N-(2-hydroxypropyl) methacrylamide copolymer-bound anticancer drugs inhibit human ovarian carcinoma heterotransplanted in nude mice. Cancer Res, 1996. 56(17): pp.3980-5.

DOI: 10.3892/ijo.15.1.5

Google Scholar

[11] E. Allemann, N. Brasseur, O. Benrezzak, J. Rousseau, S.V. Kudrevich, R.W. Boyle, J.C. Leroux, R. Gurny and J.E. Van Lier: PEG-coated poly(lactic acid) nanoparticles for the delivery of hexadecafluoro zinc phthalocyanine to EMT-6 mouse mammary tumours. J Pharm Pharmacol, 1995. 47(5): pp.382-7.

DOI: 10.1111/j.2042-7158.1995.tb05815.x

Google Scholar

[12] J.W. Snyder, E. Skovsen, J.D. Lambert and P.R. Ogilby: Subcellular, time-resolved studies of singlet oxygen in single cells. J Am Chem Soc, 2005. 127(42): pp.14558-9.

DOI: 10.1021/ja055342p

Google Scholar

[13] L.O. Cinteza, T.Y. Ohulchanskyy, Y. Sahoo, E.J. Bergey, R.K. Pandey and P.N. Prasad: Diacyllipid micelle-based nanocarrier for magnetically guided delivery of drugs in photodynamic therapy. Mol Pharm, 2006. 3(4): pp.415-23.

DOI: 10.1021/mp060015p

Google Scholar

[14] D.B. Tada, L.L. Vono, E.L. Duarte, R. Itri, P.K. Kiyohara, M.S. Baptista and L.M. Rossi: Methylene blue-containing silica-coated magnetic particles: a potential magnetic carrier for photodynamic therapy. Langmuir, 2007. 23(15): pp.8194-9.

DOI: 10.1021/la700883y

Google Scholar

[15] T.K. Jain, M.K. Reddy, M.A. Morales, D.L. Leslie-Pelecky and V. Labhasetwar: Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm, 2008. 5(2): pp.316-27.

DOI: 10.1021/mp7001285

Google Scholar

[16] I. Roy, T.Y. Ohulchanskyy, H.E. Pudavar, E.J. Bergey, A.R. Oseroff, J. Morgan, T.J. Dougherty and P.N. Prasad: Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J Am Chem Soc, 2003. 125(26): pp.7860-5.

DOI: 10.1021/ja0343095

Google Scholar

[17] D. Brevet, M. Gary-Bobo, L. Raehm, S. Richeter, O. Hocine, K. Amro, B. Loock, P. Couleaud, C. Frochot, A. Morere, P. Maillard, M. Garcia and J.O. Durand: Mannose-targeted mesoporous silica nanoparticles for photodynamic therapy. Chem Commun (Camb), 2009(12): pp.1475-7.

DOI: 10.1039/b900427k

Google Scholar