Synthesis of Water-Soluble Fe3O4 Nanopowder and its Cr(VI) Adsorption Properties

Article Preview

Abstract:

In this work, water-soluble Fe3O4 nanopowder with mesoporous structure was prepared by the thermal decomposition of Fe-urea complex ([Fe(NH2CONH2)6](NO3)3) in triethylene glycol (TEG), and the effects of reflux time and the concentration of precursor on the properties of Fe3O4 nanopowder were investigated. In addition, the adsorptive properties of the material were studied using Cr(VI) as a target pollutant. Prolonging reflux time and increase in concentration of [Fe(NH2CONH2)6](NO3)3 in TEG can effectively improve the crystallinity and magnetic properties of the Fe3O4 nanopowder. The saturation magnetization (Ms) increases from 21.4 to 48.5 emu/g when the reflux time increases from 2 to 20 h. The maximum adsorption capacity of the Fe3O4 nanopowder for Cr(VI) is estimated to be 21.6 mg/g.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-58

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao, S. Sun, Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles, Adv. Mater. 22 (2010) 2729-2742.

DOI: 10.1002/adma.201000260

Google Scholar

[2] S. Guo, D. Li, L. Zhang, J. Li, E. Wang, Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery, Biomaterials 30 (2009) 1881-1889.

DOI: 10.1016/j.biomaterials.2008.12.042

Google Scholar

[3] P. Majewski, B. Thierry, Functionalized magnetite nanoparticles—synthesis, properties, and bio-applications, Crit. Rev. Solid State & Mater. Sci. 32 (2007) 203-215.

DOI: 10.1080/10408430701776680

Google Scholar

[4] H. T. Hai, H. Kura, M. Takahashi, T. Ogawa, Facile synthesis of Fe3O4 nanoparticles by reduction phase transformation from g-Fe2O3 nanoparticles in organic solvent, J. Colloid Interf. Sci. 341 (2010) 194-199.

DOI: 10.1016/j.jcis.2009.09.041

Google Scholar

[5] S. Wu, W. Jiang, X. Zhang, H. Sun, W. Zhang, J. Dai, L. Liu, X. Chen, F. Li, A sonochemical route for the encapsulation of drug in magnetic microspheres, J. Magn. Magn. Mater. 324 (2012) 124-127.

DOI: 10.1016/j.jmmm.2011.07.038

Google Scholar

[6] A. R. Mahdavian, M. Al-S. Mirrahimi, Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification, Chem. Eng. J. 159 (2010) 264-271.

DOI: 10.1016/j.cej.2010.02.041

Google Scholar

[7] M. Iram, C. Guo, Y. Guan, A. Ishfaq, H. Liu, Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres, J. Hazard. Mater. 181 (2010) 1039-1050.

DOI: 10.1016/j.jhazmat.2010.05.119

Google Scholar

[8] S.K. Giri, N.N. Das, G.C. Pradhan, Synthesis and characterization of magnetite nanoparticles using waste iron ore tailings for adsorptive removal of dyes from aqueous solution, Colloids Surf. A 389 (2011) 43-49.

DOI: 10.1016/j.colsurfa.2011.08.052

Google Scholar

[9] S. Asuha, H. L. Wan, S. Zhao, W. Deligeer, H. Y. Wu, L. Song, O. Tegus, Water-soluble, mesoporous Fe3O4: synthesis, characterization, and properties, Ceram. Int.

DOI: 10.1016/j.ceramint.2012.05.042

Google Scholar