Effect of Surface Grafting-Modified on Structure and Property of Cellulose Fibers

Article Preview

Abstract:

Cellulose fibers were chemically modified on surface by acrylamide polymerization and glutaraldehyde crosslinking. The chemical and morphological structures of modified cellulose fibers were investigated with X-ray diffraction, FTIR spectra, and scanning electron microscopy (SEM). The crystalline conformations of the cellulose fibers were slightly changed in polymerization and crosslinking process. The wet strength of modified cellulose fibers was improved. Appreciable difference between the surfaces of native and modified cellulose fibers was observed from SEM images.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-48

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.X. Wang, Q.Shen, Q.F.Gu. Preparation and characterization of persimmon leaves/cellulose blend fiber and comparison with cellulose fiber. Carbohydr. Polym 2004; 57: 415-418.

DOI: 10.1016/j.carbpol.2004.05.017

Google Scholar

[2] K.C. Seavey; W.G. Glasser. Continuous cellulose fiber-reinforced cellulose ester composites. II. Fiber surface modification and consolidation conditions. Cellulose 2001; 8: 161-169.

Google Scholar

[3] P.D.asquini, E.M. Teixeira, A.A.S. Curveloa , Belgacem M.N, Dufresne A. Surface esterification of cellulose fibres: Processing and characterisation of low-density polyethylene/cellulose fibres composites. Compos. Sci. Technol.2008; 68:193–201.

DOI: 10.1016/j.compscitech.2007.05.009

Google Scholar

[4] L.C.V. , M.O., Wielena Stenson, Gatenholm P, Ragauskas A.J. Surface modification of cellulosic fibers using dielectric-barrier discharge. Carbohydr. Polym 2006; 65:179–184.

DOI: 10.1016/j.carbpol.2005.12.040

Google Scholar

[5] X.H. Liu, C.R. Huang, Y. Wei. Graft copolymerization of viscose fiber. China synthetic fiber industry 2002; 25:29-31.

Google Scholar

[6] A. Fadhel, B. Sami, L. Jalel. Modified cellulose fibres for adsorption of organic compound in aqueous solution. Sep. Purif. Technol. 2006; 52: 332–342.

Google Scholar

[7] S.Y. Kim, A. Zille , M. Murkovic, G. G¨uebitz, A. Cavaco-Paulo. Enzymatic polymerization on the surface of functionalized cellulose fibers. Enzyme Microb. Technol 2007;40: 1782–1787.

DOI: 10.1016/j.enzmictec.2007.01.001

Google Scholar

[8] M.L. Nelson, R.T. O'Connor. Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part I. Spectra of lattice types I, II, III and amorphous cellulose. J Appl Polym Sci 1964; 8:1311–24.

DOI: 10.1002/app.1964.070080322

Google Scholar

[9] M.L. Nelson, R.T., O'Connor. Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. PartII. A new infrared ratio for estimation of crystallinity in cellulose I and II. J Appl Polym Sci 1964; 8:1325–41.

DOI: 10.1002/app.1964.070080323

Google Scholar

[10] K. Van deVelde, P. Kiekens. Thermal degradation of flax:The determination of kinetic parameters with thermogravimetric analysis. J Appl Polym Sci 2001; 83:2634–43.

DOI: 10.1002/app.10229

Google Scholar