Research Progress in Nano-Cellulose Modification

Article Preview

Abstract:

As an environmentally friendly material prepared from renewable natural resources, nano-cellulose demonstrates excellent properties, including high crystallinity, high purity, high surface area, unique optical properties, and high Young's modulus. Furthermore, it has the advantages of bio-based materials such as light-weight, bio-degradable, bio-compatible, and renewable. Therefore, the nano-cellulose shows a great potential for developing new composite materials with high performances. This paper summarizes the ways for chemically modifying nano-cellulose to obtain better dispersion and improve its compatibility with nonpolar or hydrophobic matrices in nano-composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

859-863

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Favier, G.R. Canova, and J.Y. Cavaille: Macromolecules Vol. 28 (1995), p.6365.

Google Scholar

[2] D.Y. Ye, H. Huang, and H.Q. Fu: J. Chem. Ind. Eng. Vol. 57 (2006), P. 1782.

Google Scholar

[3] P. Stenstad, M. Anderson, and B.S. Tanem: Cellulose Vol. 15 (2008), P. 35.

Google Scholar

[4] Y. Habibi, A.L. Lucia, and O.J. Rojas: Chem. Rev. Vol. 110(2010), P. 3479.

Google Scholar

[5] S. Beck-Candanedo, M. Roman, and D.G. Gray: Biomacromolecules Vol. 6 (2005), P. 1048.

Google Scholar

[6] M. Roman, W.T. Winter: Biomacromolecules Vol. 5 (2004), P. 1671.

Google Scholar

[7] M. Hasani, E.D. Cranston, and G. Westman: Soft Matter Vol. 4 (2008), P. 2238.

Google Scholar

[8] A.E.J. de Nooy, A.C. Besemer, and H.V. Bekkum: Carbohydr. Res. Vol. 269 (1995), P. 89.

Google Scholar

[9] T. Isogai, T. Saito, and A. Isogai: Cellulose Vol. 18 (2011), P. 421.

Google Scholar

[10] Y. Habibi, H. Chanzy, and M.R. Vignon: Cellulose Vol. 13 (2006), P. 679.

Google Scholar

[11] H.H. Yuan, Y. Nishiyama, and M. Wadal: Biomacromolecules, Vol. 7 (2006), P. 696.

Google Scholar

[12] N. Wang, E.Y. Ding, and R.S. Cheng: Acta Polymerica Sinica (In Chinese), Vol. 7 (2006), P. 982.

Google Scholar

[13] C. Gousse, H. Chanzy, and G. Excoffier: Polymer Vol. 43 (2002), P. 2645.

Google Scholar

[14] B.L. Peng, N. Dhar, and H.L. Liu: Can. J. Chem. Eng. Vol. 89 (2011), P. 1191.

Google Scholar

[15] F. Azzam, L. Heux, and J.L. Putaux: Biomacromolecules Vol. 16 (2010), P. 455.

Google Scholar

[16] Q.X. Xu, J. Yi, and X.F. Zhang: Eur. Polym. J Vol. 44 (2008), P. 2830.

Google Scholar

[17] S. E. Gradwell, S. Renneckar, and A.R. Esker: Comptes Rendus Biologies Vol. 327 (2004), P. 945.

DOI: 10.1016/j.crvi.2004.07.015

Google Scholar

[18] N. Ljungberg, C. Bonini, and F. Bortolussi: Biomacromolecules Vol. 6 (2005), P. 2732.

Google Scholar

[19] S. Ahola, M. Osterberg, and J. Laine: Cellulose Vol. 15 (2008), P. 303.

Google Scholar