Hot Deformation Behavior of TiNiFe Shape Memory Alloy: A Study with Processing Map

Article Preview

Abstract:

Isothermal compression of the TiNiFe shape memory alloy has been carried out on a Gleeble-3500 thermal simulation machine at the deformation temperature ranging from 1023K to 1323K, the strain rate ranging from 0.01s-1 to 10s-1 with total strain of 0.8. On the basis of dynamic material model, the processing map is established with two instability regions and a desirable domain which demonstrate optimum hot working conditions within the experimental parameters. By means of Electron Back Scattering Diffraction, we come to the conclusion that both dynamic recovery and dynamic recrystallization exist in the desirable domain with deformation temperature ranging 1123 K and strain rate 0.1s-1. The uneven deformation exits in the low deformation temperature with high strain rate area, such as 1023 K and10 s-1. And with 1323K and 0.01s-1 strain rate, the recrystallized grains are abnormal grow up.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 631-632)

Pages:

371-376

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. C. Zhao, W. Cai, Y. F. Zheng, Shape Memory Effect and Superelasticity in Alloys, Vol. 8, Defense industry press, Beijing, 2002, p.352–370 (in Chinese).

Google Scholar

[2] K. Otsuka, X. Ren, Intermetallics, 7 (1999), pp.511-528.

Google Scholar

[3] C. P. Frick, A. M. Ortega, J. Tyber, K. et al. Maier, Mater. Trans. A 35 (2004), p.2013-(2025).

Google Scholar

[4] H. Zhang,Y. He, X. Liu, J. Xie, Acta. Metall. Sin. 43 (9) (2007), pp.930-936.

Google Scholar

[5] K. Dehghani, A. A. Khamei, Mater. Sci. Eng. A 527 (2010), pp.684-690.

Google Scholar

[6] M. Morakabati, Sh. Kheirandish, M. Aboutalebi, et al. Mater. Sci. Eng. A 528 (2011), pp.5656-5663.

Google Scholar

[7] Y. C. Zhu, W. D. Zeng, F. Feng, et al. Mater. Sci. Eng. A 528 (2011), pp.1757-1763.

Google Scholar

[8] X. Zhao, K. Zhang, X. G. Li, et al. Mater. Sci. Forum 610-613 (2009), pp.815-821.

Google Scholar

[9] Y. V. R. K. Prased, T. Sheshacharulu, Int. Mater. Rev. 43 (1998), pp.243-258.

Google Scholar

[10] G. K. Kridli, A. S. El-Gizawy, R. Lederich, Mater. Sci. Eng. A 244 (1998), pp.224-232.

Google Scholar

[11] N. K. Park, J. T. Yeom, Y. S. Na, J. Mater. Pro. Technol. 130-131 (2002), pp.540-545.

Google Scholar

[12] K. W. Lee, J. S. Ban, M. G. Lee, et al, J. Mech. Sci. Technol. 22 (2008), pp.931-936.

Google Scholar

[13] C. Y. Wang, K. Wu, M. Y. Zhang, Trans. Nonferrous Met. Soc. China, 16 (2006), pp.1758-1761.

Google Scholar

[14] A. K. S. Kalyan Kumar, M. Sc. (Engg) Thesis, Indian Institute of Science, (1987).

Google Scholar

[15] Y. V. R. K. Prased, J. Mater. Eng. Perform, 12 (6) (2003), pp.638-645.

Google Scholar

[16] A. B. Li, L. J. Huang, Q. Y. Meng, et al, Mater. Des. 30 (2009), pp.1625-1631.

Google Scholar

[17] O. Sivakesavam, Y. V. R. K. Prasad, Mater. Sci. Eng. A 362 (2003), pp.118-124.

Google Scholar