Refinement Effect and Mechanism of AZ31 Magnesium Alloy by Electromagnetic Stirring under the Effect of Grain-Refiner

Article Preview

Abstract:

The effects of electromagnetic stirring and Al4C3 grain refiner on the grain refinement of semi-continuously cast AZ31 magnesium alloy were discussed in this investigation. The results indicate that electromagnetic stirring has effective refining effect on the grain size of AZ31 magnesium alloy under the effect of Al4C3 grain refiner. Electromagnetic stirring can “activate” the Al4C3 particles, resulting in more heterogeneous nucleation sites for the primary α-Mg grains. But, longer holding time can “inactivate” the Al4C3 particles, and the optimal experimental holding time is 60 min in the present investigation. The activated rate of the electromagnetic under the experimental condition ρ2=1.65%.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 631-632)

Pages:

556-561

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.J. Lahaie, M. Bouchard, Physical modeling of the deformation mechanisms of semisolid bodies and a mechanical criterion for hot tearing, Metall. Mater. Trans. 32B (2001) 697-705.

DOI: 10.1007/s11663-001-0124-5

Google Scholar

[2] M.B. Yang, F.S. Pan, R.J. Cheng, A.T. Tang, Effects of solutionized Al-10Sr master alloys on grain refinement of AZ31 magnesium alloy, J. Alloys. Compd. 461 (2008) 298-303.

DOI: 10.1016/j.jallcom.2007.06.124

Google Scholar

[3] H. Watanabe, H. Tsutsui, T. Mukai, Superplastic behavior in commercial wrought magnesium alloys, Mater. Sci. Forum. 350/351 (2000) 171-176.

DOI: 10.4028/www.scientific.net/msf.350-351.171

Google Scholar

[4] T. Mukai, H. Watanabe, K. Higashi, Grain refinement of commercial magnesium alloys for high-strain-rate-superplastic forming, Mater. Sci. Forum. 350/351 (2000) 159-170.

DOI: 10.4028/www.scientific.net/msf.350-351.159

Google Scholar

[5] Y. Tamura, N. Kono, T. Motegi, Grain refining mechanism and casting structure of Mg-Zr alloy, J. Jpn Inst. Ligh. Met. 48 (1998) 185-189.

DOI: 10.2464/jilm.48.185

Google Scholar

[6] S.F. Liu, Y. Zhang, H. Han, B. Li, Effect of Mg-TiB2 master alloy on the grain refinement of AZ91D magnesium alloy, J. Alloys Compd. 487 (2009) 202-205.

DOI: 10.1016/j.jallcom.2009.08.065

Google Scholar

[7] S.X. Xiao, C.Y. Wang, T.L. Chen, The application of the discrete variational method in the density functional theory to chemistry and materials physics, Science Press, Beijing, (1998).

Google Scholar

[8] S.Y. Gao, J.Z. Cui, Q.Z. Le, Z.Q. Zhang, The research on the effect of MgCO3 on the grain refinement in AZ31 magnesium alloy, Materialwissenschaft und Werkstofftechnik 41 (2010) 652-656.

DOI: 10.1002/mawe.201000591

Google Scholar

[9] S.V. Komarov, M. Kuwabara, O.V. Abramov, High power ultrasonics in pyrometallurgy: Current status and recent development, ISI J. Inter. 45 (2005) l765-1782.

DOI: 10.2355/isijinternational.45.1765

Google Scholar

[10] B. L. Bramffit, The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron, Metall. Mater. Trans. 1A (1970) 1987-(1995).

DOI: 10.1007/bf03037838

Google Scholar

[11] S.Y. Gao, Q.Z. Le, Z.Q. Zhang, J.Z. Cui, Effects of Al-Al4C3 refiner and ultrasonic field on microstructures of pure Mg, Acta Metall. Sin. 46 (2010) 1495-1500.

Google Scholar

[12] S.Y. Gao, Q.Z. Le, J.Z. Cui, Z.Q. Zhang, Refining effect/mechanism of SrCO3 in AZ31 magnesium alloy, Chin. J. Mater. Res. 24 (2010) 597-602.

Google Scholar