[1]
ANDREW RICHARD, ARGYRIOS MARGARITIS. Rheology Oxygen Transfer, and Molecular Weight Characteristics of Poly(glutamicacid) Fermentationby Bacillus Subtilis[J]. Biotechnol Bioeng, 2003, 82: 299-305.
DOI: 10.1002/bit.10568
Google Scholar
[2]
SHIH ING-LUNG, YU YUN-TI. Simultaneous and Selective Production of Levan and Poly(γ-glutamicacid) by Bacillus Subtilis[J]. Biotechnology Letters, 2005, 27: 103-106.
DOI: 10.1007/s10529-004-6936-z
Google Scholar
[3]
ISHWAR B. BAJAJ, REKHA S. SINGHALl. Enhanced Production of Poly (γ-glutamic acid) from Bacillus licheniformis NCIM 2324 by Using Metabolic Precursors [J]. Appl. Biochem. Biotechnol., 2009, 159: 133–141.
DOI: 10.1007/s12010-008-8427-5
Google Scholar
[4]
AGHAIANIAN S, HOVEPYAN M, GEOGHEGAN K F, CHRUNYK B A, ENGEL P C. A thermally sensitive loop in clostridial glutamate dehydrogenase detectedby limited proteolysis[J]. The Journal of Biological Chemistry, 2003, 2: 1067-1074.
DOI: 10.1074/jbc.m206099200
Google Scholar
[5]
BASMA GHORBEL, ALYA SELLAMI-KAMOUN, MONCEF NASRI. Stability studies of protease form Bacillus cereus BG1[J]. Enzyme and Microbial Technology , 2003, 32(5): 513-518.
DOI: 10.1016/s0141-0229(03)00004-8
Google Scholar
[6]
CHOI W S, AHN K J, LEE D W., BYUN M W, PARK H J. Preparation of chitosan oligomers by irradiation[J]. Polymer Degradation and stability, 2002, 78(3): 533-538.
DOI: 10.1016/s0141-3910(02)00226-4
Google Scholar
[7]
FUJII T, SAKAI H, KAWATA Y, HATA Y. Crystal Structure of Thermostable lysozyme from Bacillus sp. YM55-1: Structure-based Exploration of Functional Sites[J] . Journal of Molecular Biology, 2003, 328(3): 635-654.
DOI: 10.1016/s0022-2836(03)00310-3
Google Scholar
[8]
KOMEDA H, ISHIKAWA N, ASABO Y. Enhancement of the thermostability and catalytic activity ofD-stereospecific amino-acid amidase from Ochrobactrum anthropi SV3 by directed evolution[J]. Journal of Molecular Catalysis. B, Enzymatic , 2003,. 21(4): 283-290.
DOI: 10.1016/s1381-1177(02)00233-3
Google Scholar
[9]
I. GOMES, J. GOMES, W. STEINER,H. ESTERBAUER. Production of zearalenone-degraded enzyme and xylanase by a wild strain of Trichoderma viride[J]. Applied Microbiology and Biotechnology, 2004, 36(5): 701-707.
DOI: 10.1007/bf00183253
Google Scholar
[10]
IMOTO T, YAGISHITA K. Isolation, purification, and characterization of zearalenone-degraded enzyme[J]. Biochemistry, 1991, 35(2): 1154-1156.
Google Scholar
[11]
L C TISI, P J WHITE, D J SQUIRRELL, M J MURPHY, J.A.H. MURRAY. Development of a thermostable firefly luciferase[J]. Analytica Chimica Acta. 2002, 457(1): 115-123.
DOI: 10.1016/s0003-2670(01)01496-9
Google Scholar
[12]
MICHIAKI MATSUMOTO, KUNIHIRO OHASHI. Effect of immobilization on thermostability of lipase from Candida rugosa[J]. Biochemical Engineering Journal. 2003, 14(1): 75-77.
DOI: 10.1016/s1369-703x(02)00138-9
Google Scholar
[13]
OH KH, NAM S H, KIM HS. Improvement of oxidative and thermostability of N-carbamyl-D-amino acidamidohydrolase by directed evolution[J]. Protein Engineering, 2002, 15(8): 689-695.
DOI: 10.1093/protein/15.8.689
Google Scholar
[14]
R. A NIEVES, C.I. EHMAN, W.S. ADNEY, R.T. ELANDER and M.E. HIMMEL. Survey and analysis of commercial zearalenone-degraded enzyme preparations suitable for biomass conversion to ethanol[J]. World Journal of Microbiology and Biotechnology, 2004, 14(2): 301-304.
DOI: 10.1023/a:1008871205580
Google Scholar