The Effect of Alcoholic Reducing Agent and CTAB on Morphology and Structure of VO2 (M) Nano-Particles

Article Preview

Abstract:

M-phase vanadium dioxides (VO2) is synthesized by hydrothermal-solvothermal method. In this process,V2O5 powder is used as raw materials,cetyltrimethylammonium bromide (CTAB) is used as templates and hydrazine combined with different alcohols such as ethanol, propanol and butanol are used as reductants. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to test the properties of VO2 nanoparticles. The results show that VO2(M) nano-particles were succsessfully synthesized under the conditions of thermal reduction temperature 250°C, reaction time 8h and drying temperature 60°C. The variety of alcoholic reducing agents plays an important role in the structure and morphology of the product VO2(M). That makes the size of the particles smaller, and with the carbon atom numbers increasing, the crystallinity is better.The different methods of adding CTAB affect the polycrystalline structure of the product, which is VO2(B) or VO2(M).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

2288-2292

Citation:

Online since:

January 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ch. Cao, Y. Gao and H. Luo: Phys. Chem. C. Vol. 112(2008), p.18810.

Google Scholar

[2] J. Qi, G. Ning, J. Liu and Ch. Wang: Chem. Ind. Eng. Prog. Vol. 405(2002), p.234 (In Chinese).

Google Scholar

[3] T.J. Hanlon, R.E. Walker, J.A. Coath and M.A. Richardson: Thin Solid Films. Vol. 405 (2002), p.234.

Google Scholar

[4] H.T. Kim, B.G. Chae, D.H. Youn, S.L. Maeng, G. Kim, K.Y. Kang, Y.S. Lim: New J. Phys. Vol. 6(2004), p.52.

Google Scholar

[5] M. Soltani, M. Chaker, E. Haddad and R. Kruzelesky: Meas. Sci. Technol. Vol. 17(2006), p.1052.

Google Scholar

[6] H. Liu, A. Rua, O. Vasquez, V.S. Vikhnin, F.E. Fernandez, L.F. Fonseca, O. Resto and S.Z. Weisz: Sensors. Vol. 5(2005), p.185.

DOI: 10.3390/s5040185

Google Scholar

[7] T.D. Manning, I.P. Parkin, M.E. Pemble, D. Sheel and D. Vernardou: Chem. Mater. Vol. 16(2004), p.744.

Google Scholar

[8] J. Qi and Ch. Niu: Adv. Mater. Vol. 306(2011), p.1225.

Google Scholar

[9] Sh. Ji, Y. Zhao, F. Zhang and P. Jin: J. Cryst. Growth: Vol. 312 (2010), p.282.

Google Scholar

[10] L. Whittaker, T. Wu, J.P. Christopher, G. Sambandamurthyb and S. Banerjee: J. Mater. Chem. Vol. 21(2011), p.5580.

Google Scholar

[11] S. Ji, F. Zhang and P. Jin: Mater. Lett. Vol. 65(2011), p.708.

Google Scholar

[12] L. Whittaker, Ch. Jaye, Z. Fu, D.A. Fischer and S. Banerjee: Am. Chem. Soc. Vol. 131(2009), p.8884.

Google Scholar

[13] L. Whittaker, J.M. Velazquez and S. Banerjee: CrystEngComm. Vol. 13(2011), p.5328.

Google Scholar

[14] Ch. Wu, X. Zhang, J. Dai, J. Yang, Z. Wu, Sh. Wei and Y. Xie: J. Mater. Chem. Vol. 21(2011), p.4509.

Google Scholar

[15] J.H. Son, J. Wei, D. Cobden, G. Cao and Y. Xia: Chem. Mater. Vol. 22(2010), p.3043.

Google Scholar

[16] J. Qi, Ch. Niu and Y. Xu et al: Adv. Mater. Vol. 306(2011), p.234.

Google Scholar