Topography and Wettability of Waterborne Polyurethane Coatings with Varying Amounts of Hard Segments

Article Preview

Abstract:

Topography and wettability plays an important role to fouling release performance of a coating. Surface morphology and water contact angles (WCA) depending on time of three waterborne polyurethane (WPU) coatings were studied by laser scanning microscope and optical contact angle meter. The results show that WPU coatings with low hard segment content are consisted of hard segment domains, soft segment domains and crack-like non-cohesive regions. With increasing hard segment content, nanostructured micro-phase separated topography is easier to forming, and crack-like non-cohesive regions is reduced. A stable hydrophobic surface in the WPU system can be obtained by drying coating at 60C as well as adding hard segment content to improve fouling release performance of the coatings.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

3033-3037

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Rosenhahn, T. Ederth and M.E. Pettitt: Biointerphases 3 (2008) , IR1-5.

Google Scholar

[2] E. Almeida, T.C. Diamantino and O. de Sousa: 59 (2007), 2-20.

Google Scholar

[3] L.D. Chambers, K.R. Stokes, F.C. Walsh and R.J.K. Wood: Surface and Coatings Technology, 201 (2006) , 3642-3652.

DOI: 10.1016/j.surfcoat.2006.08.129

Google Scholar

[4] D.M. Yebra, S. Kiil and K. Dam-Johansen: Progress in Organic Coatings, 50 (2004), 75-104.

DOI: 10.1016/j.porgcoat.2003.06.001

Google Scholar

[5] F. Xu, Y. Wang, X. Jiang, H. Tan, H. Li and K.-J. Wang: The Kaohsiung Journal of Medical Sciences, 28 (2012 ), 10-15.

Google Scholar

[6] Z. Ze, M.W. King, R.Guidoin, M.Therrien, M.Pezolet, A. Adnot, P.Ukpabi and M.H. Vantal: Biomaterials, 15 (1994 ) , 483-501.

DOI: 10.1016/0142-9612(94)90014-0

Google Scholar

[7] D.J. Martin, L.A. Poole Warren, P.A. Gunatillake, S.J.McCarthy, G.F. Meijs and K.Schindhelm: Biomaterials, 21 (2000 ) , 1021-1029.

DOI: 10.1016/s0142-9612(99)00271-9

Google Scholar

[8] I. Francolini, F. Crisante, A. Martinelli, L. D'Ilario and A. Piozzi: Acta biomaterialia, 8 (2012) , 549-558.

DOI: 10.1016/j.actbio.2011.10.024

Google Scholar

[9] D.K. Chattopadhyay and K.V.S.N. Raju: Progress in Polymer Science, 32 (2007), 352-418.

Google Scholar

[10] M. Xu, W.J. MacKnight, C.H.Y. Chen and E.L. Thomas: Polymer, 24 (1983 ), 1327-1332.

Google Scholar

[11] C.H.Y. Chen, R.M. Briber, E.L. Thomas, M. Xu and W.J. MacKnight : Polymer, 24 (1983) , 1333-1340.

Google Scholar

[12] M.S. Sánchez-Adsuar: International Journal of Adhesion and Adhesives, 20 (2000 ) , 291-298.

Google Scholar

[13] A.L. Chang, R.M. Briber, E.L. Thomas, R.J. Zdrahala and F.E. Critchfield: Polymer, 23 (1982) , 1060-1068.

DOI: 10.1016/0032-3861(82)90409-8

Google Scholar

[14] I. Yilgor, E. Yilgor, I.G. Guler, T.C. Ward and G.L. Wilkes: Polymer, 47 (2006) , 4105-4114.

DOI: 10.1016/j.polymer.2006.02.027

Google Scholar

[15] W. Li-Fen : European Polymer Journal, 41 (2005 ), 293-301.

Google Scholar

[16] M.A. Hood, B. Wang, J.M. Sands, J.J. La Scala, F.L. Beyer and C.Y. Li: Polymer, 51 (2010) , 2191-2198.

Google Scholar

[17] S.L. Chai, M.M. Jin and H.M. Tan: European Polymer Journal, 44 (2008), 3306-3313.

Google Scholar

[18] S. Zhang, RenLiu, J. Jiang, C. Yang, M. Chen and X. Liu: Progress in Organic Coatings, 70 (2011), 1-8.

Google Scholar

[19] M.L. Carman, T.G. Estes, A.W. Feinberg, J.F. Schumacher, W. Wilkerson, L.H. Wilson, M.E. Callow, J.A. Callow and A.B. Brennan: Biofouling, 22 (2006) , 11-21.

DOI: 10.1080/08927010500484854

Google Scholar

[20] J. Fang, A. Kelarakis, D. Wang, E.P. Giannelis, J.A. Finlay, M.E. Callow and J.A. Callow: Polymer, 51 (2010), 2636-2642.

DOI: 10.1016/j.polymer.2010.04.024

Google Scholar