Bone Distribution Simulation during Damage-Repair Bone Remodeling in Human Proximal Femur

Article Preview

Abstract:

A new damage-adaptive bone remodeling model, in which an algorithm incorporating both strain and damage stimuli, is developed in this paper. Typically, a human proximal femur model is established to predict the bone mass distribution during bone remodeling process. And human physiology damage-repair cycle is considered in the model. The governing equations of the mathematical model, digesting the predecessors’ ideas, are numerically solved and implemented into ANSYS software via the user interface of finite element algorithm. With the aid of this novel model, the whole healing behavior of human proximal femur is elucidated properly.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

883-891

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.M. Pidaparti, Q.Y. Wang, D.B. Burr. Biomed Mater Eng, 11(2); 69-78(2001).

Google Scholar

[2] D. Taylor, JG Hazenberg, et al. Nature Materials, 6(4): 263-268(2007).

Google Scholar

[3] R. Huiskes, R. Ruimerman, et al. Nature , 405(6787): 704(2000).

Google Scholar

[4] R. Ruimerman, P. Hilbers. Journal of Biomechanics, 38(4): 931–94(2005).

Google Scholar

[5] JL. Wolff: The law of bone remodeling. (Springer, Berlin, 1986).

Google Scholar

[6] Q.H. Qin and J.Q. Ye, Int. J. Solids & Structures, 41(9-10), 2447-2460, (2004).

Google Scholar

[7] Q.H. Qin, C.Y. Qu and J.Q. Ye, Biomaterials, 26(33), 6798-6810, (2005).

Google Scholar

[8] N. Giordano, E. Battisti. CurrTher Res; 62: 187–93(2001).

Google Scholar

[9] C.Y. Qu, Q.H. Qin, Y.L. Kang. Biomaterials 27, 4050–4057(2006).

Google Scholar

[10] V. Bentolila, T. Boyce, et al. Bone , 23(3) (1998).

Google Scholar

[11] S.J. Hazelwood, R.B. Martin, et al. Journal of Biomechanics, 34: 299-308(2001).

Google Scholar

[12] D.R. Carter, D.P. Fyhrie, R.T. Whalen. J Biomech, 113: 191-197(1989).

Google Scholar

[13] D.R. Carter, G.S. Beaupre. Skeletal function and form: Mechanobiology of Skeletal Development, Aging and Regeneration; 1st edition. Cambridge University Press, Cambridge, (2001).

DOI: 10.1002/oa.640

Google Scholar

[14] X.H. Zhu, H. Gong, et al. Journal of Biomechanics, 35(7): 951–960(2002).

Google Scholar

[15] J. Li, H. Li, et al. Dental Materials, 23(9): 1073–1078(2007).

Google Scholar

[16] G. Chen et al. Biomech And Modeling In Mech, 6(4): 275-285 (2007).

Google Scholar

[17] Anders Halldin, Ryo Jimbo. No. of pages: 7; 4C: 3, 4 Bone (2011).

Google Scholar

[18] J.C. Ryan, J.L. Williams, Journal of Biomechanics. 22: pp.351-355(1989).

Google Scholar

[19] P.J. Prendergast and D. Taylor. Biomech , 27(8): 1067-1076(1994).

Google Scholar

[20] V. Bentolila, T. Boyce, et al. Bone, 23(3)(1998).

Google Scholar

[21] L.M. McNamara et al. Journal of Biomechanics, 40(6): 1381-1391(2007).

Google Scholar

[22] Y.L. Lee, J. Pan, et al. Fatigue testing and analysis: theory and practice. Burlington, MA: Butterworth-Heinemann. (2004).

Google Scholar

[23] C. Wang, C. Zhang, et al. Bone Miner Metab. 29(4): 466–476. (2011).

Google Scholar

[24] C.R. Jacobs, Numerical Simulation of Bone Adaptation to Mechanical Loading, Dissertation for the Degree of Doctor of Philosophy, Stanford University, (1994).

Google Scholar

[25] D.R. Carter et al. Journal of Biomechanics 9, 211–218(1976).

Google Scholar

[26] M.G. Mullender and R. J. Huiskes Orthop Res , 13(4): 503-512(1995).

Google Scholar

[27] D. Taylor and J.H. Kuiper. Journal Of Orthopedic Research, 19(5): 919–926(2001).

Google Scholar

[28] C. H Qu, S.W. Yu, et al. Comput. Mater. Sci. Volume 57, 89–93. (2012).

Google Scholar

[29] P. Zioupos J.D. Currey. Journal of Material Science 29, 978-986(1994).

Google Scholar

[30] J.M. García, et al. Computational Materials Science 25100-114 (2002).

Google Scholar