Study on Film Formability of Thermosetting Phenolic Resin Film

Article Preview

Abstract:

A novel modified thermosetting phenolic resin was synthesized by bulk polymerization. The main process of the phenolic resin film formation was studied by tensile shear test. The preparation technology was determined by the investigation of viscosity behavior, gel properties and the data of DSC. The flexible rolled resin film was manufactured at 100±3°C while the moving speed of release paper is at 2 m/min on hot melt machine made in California Graphite Machines Inc. USA. The area weight of the film is 400±20 g/m2, the width of that is 300 mm and the thickness of that is 0.32±0.04 mm.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 641-642)

Pages:

513-520

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Martin, The Chemistry of Phenolic Resins, Wiley, New York, (1956).

Google Scholar

[2] A. Knop, W. Scheib, Chemistry and Application of Phenolic Resins; Springer: New York, (1979).

Google Scholar

[3] A. Knop, L. A. Pilato, Phenolic Resins: Chemistry, Applications, Performance and Future Direction, Berlin, Springer, (1985).

Google Scholar

[4] C. Chmielewski, K. Jayaraman, C. A. Petty, Polym. Com. 14 (1993) 257.

Google Scholar

[5] B. S. Hayes, J. C. Seferis, R. R. Edwards, Self-adhesive honeycomb prepreg systems for secondary structural applications, Polym. Com. 19 (1998) 54-64.

DOI: 10.1002/pc.10075

Google Scholar

[6] C. P. Reghunadhan Nair, Advances in addition-cure phenolic resins Progress in Polymer Science. 29 (2004) 401-498.

DOI: 10.1016/j.progpolymsci.2004.01.004

Google Scholar

[7] R. L. Bindu, C. P. Reghunadhan Nair, K. N. Ninan, Phenolic resins with phenyl maleimidefunctions: Thermal characteristics and laminate composite properties, J. Appl. Polym. Sci. 80 (2001) 1664-1674.

DOI: 10.1002/app.1261

Google Scholar

[8] J. Hunter, K. L. Forsdyke, Phenolic glass fiber-reinforced plastic and its recent applications, Polym. Compo. 2 (1989) 85-169.

Google Scholar

[9] D. G. Hepworth, D. M. Bruce, J. F. V. Vincent, G. Jeronimidis, The manufacture and machanical testing of thermosetting natural fibre composites, J. Mater. Sci. 35 (2000) 293-298.

Google Scholar

[10] M. Molyneux, P. Murry, Prepreg, tape and fabric technology for advanced composites, Composites. 14 (1983) 87-91.

DOI: 10.1016/s0010-4361(83)80003-2

Google Scholar

[11] K. J. Ahn, J. C. Seferis, Prepreg processing science and engineering, Polym. Eng. & Sci. 33 (1993) 1177-1188.

DOI: 10.1002/pen.760331805

Google Scholar

[12] A.G. Gibson, J. A. Manson, Impregnation technology for thermoplastic matrix composites, Composites Manufacturing. 3 (1992) 223-233.

DOI: 10.1016/0956-7143(92)90110-g

Google Scholar

[13] J. Wolfrum, G. W. Ehrenstein, Interdependence between the curing, structure, and the mechanical properties of phenolic resins, J. Appl. Polym. Sci. 74 (1999) 3173-3185.

DOI: 10.1002/(sici)1097-4628(19991220)74:13<3173::aid-app21>3.0.co;2-6

Google Scholar

[14] M. -F. Grenier-Loustalot, G. Raffin, B. Salino, Phenolic resins Part 6. Identifications of volatile organic molecules during thermal treatment of neat resols and resol filled with glass fibers, Polymer. 41 (2000) 7123-7132.

DOI: 10.1016/s0032-3861(00)00045-8

Google Scholar

[15] M. N. Charalambides, J. M. Williams, Fracture toughness characterization of phenolic resin and its composite, Polym. Compo. 16 (1995) 17-28.

DOI: 10.1002/pc.750160105

Google Scholar

[16] C. S. Tyberg, K. Bergeron, M. Sankarapandian, P. Shih, A. C. Loos, Structure–property relationships of void-free phenolic–epoxy matrix materials, Polymer. 41 (2000) 5053-5062.

DOI: 10.1016/s0032-3861(99)00574-1

Google Scholar

[17] U. Yashitaka, T. Takayuki, F. Yasuo, US patent 5, 284, 702. (1994).

Google Scholar

[18] M. George, Prepregs—raw material for high-performance composites, Reinforced plastics. 46 (2002) 24-28.

DOI: 10.1016/s0034-3617(02)80172-2

Google Scholar

[19] C. Chmielewski, K. Jayaraman, C. A. Petty, Processing effects in production of composite prepreg by hot melt impregnation, Polym. Compo. 14 (1993) 257-264.

DOI: 10.1002/pc.750140311

Google Scholar

[20] B. S. Hayes, J. C. Seferis, S. Chen. Judy, Development and hot-melt impregnation of a model controlled flow prepreg system, Polym. Compo. 17 (1996) 730-742.

DOI: 10.1002/pc.10665

Google Scholar

[21] G. A. Richard, J. M. Micheal, M. K. John, E. H. Kenneth, US patent 4, 804, 509. (1989).

Google Scholar

[22] H. Tilmann, R. Kolja, S. Christian, US patent 6, 716, 376 B1. (2004).

Google Scholar

[23] J. D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York, (1980).

Google Scholar

[24] S. B. Christopher, L. R. Stephen, Fundamental Principles of Polymeric Materials, Wiley, Hoboken, (1993).

Google Scholar