[1]
O. Yasniy, Y. Lapusta, Y. Pyndus, A. Sorochak, V. Yasniy. Assessment of lifetime of railway axle. International Journal of Fatigue xxx (2012) xxx-xxx.
DOI: 10.1016/j.ijfatigue.2012.04.008
Google Scholar
[2]
U. Zerbst, K. Maedler, H. Hintze. Fracture mechanics in railway applications - an overview. Eng Fract Mech 2005; 72: 163-94.
DOI: 10.1016/j.engfracmech.2003.11.010
Google Scholar
[3]
V. Gerdun, T. Sedmak, V. Sinkovec, I. Kovse, B. Cene. Failures of bearings and axles in railway freight wagons. Eng Fail Anal 2007; 14: 884-94.
DOI: 10.1016/j.engfailanal.2006.11.044
Google Scholar
[4]
R. Hirakawa, K. Toyama, M. Kubota. The analysis and prevention of failure in railway axles. Int J Fatigue 1998; 20: 135-44.
DOI: 10.1016/s0142-1123(97)00096-0
Google Scholar
[5]
K. Hirakawa, M. Kubota. the fatigue design method for vehicle axle high-speed railway. Electric Locomotives & Mass Transit Vehicles, 2004, 27: 44-46.
Google Scholar
[6]
R. A. Smith, S. Hillmansen. A brief historical overview of the fatigue of railway axles. In: Proc. Instn. Mech. Engrs. Part F: J. Rail and Rapid Transport, 2004, 218: 267-274.
DOI: 10.1243/0954409043125932
Google Scholar
[7]
U. Zerbst, S. Beretta. Failure and damage tolerance aspects of railway components, Engineering Failure Analysis, 2011, 18: 534-542.
DOI: 10.1016/j.engfailanal.2010.06.001
Google Scholar
[8]
http: /finance. jrj. com. cn/2008/10/2515112479637. shtml.
Google Scholar
[9]
V. Grubisic, G. Fischer. Railway axle failures and durability validation, Proc IMechE Part F: J Rail and Rapid Transit, 226(5), 2012: 518-529.
DOI: 10.1177/0954409712442325
Google Scholar
[10]
L. Fouilland, M. E. Mansori, A. Massaq. Friction-induced work hardening of cobalt-base hardfacing deposits for hot forging tools. Journal of materials processing technology 209 (2009) 3366-3373.
DOI: 10.1016/j.jmatprotec.2008.07.039
Google Scholar
[11]
T. F. Jing, F. C. Zhang. The work-hardening behavior of medium manganese steel under impact abrasive wear condition. Materials Letters 31(1997) 275-279.
DOI: 10.1016/s0167-577x(96)00293-5
Google Scholar
[12]
M. H. Zhu, Z. R. Zhou. On the mechanisms of various fretting wear modes. Tribology International, 44(2011)1378-1388.
DOI: 10.1016/j.triboint.2011.02.010
Google Scholar
[13]
J. F. Zheng, J. Luo, J. L. Mo, J. F. Peng, X. S. Jin, M. H. Zhu. Fretting wear behaviors of a railway axle steel. Tribology International 43(2010) 906-911.
DOI: 10.1016/j.triboint.2009.12.031
Google Scholar
[14]
J. L. Mo, Z. J. Liao, M. H. Zhu. Z. R. Zhou. An Experimental Study on the Rotational Fretting Wear Behavior of LZ50 Steel. Advanced Tribology. 2010, Part 3, II: 300-301.
DOI: 10.1007/978-3-642-03653-8_93
Google Scholar
[15]
J. F. Peng, C. Song, M. X. Shen, J. F. Zheng, Z. R. Zhou, M. H. Zhu. An experimental study on bending fretting fatigue characteristics of 316L austenitic stainless steel. Tribology International Volume 44, Issue 11, October 2011, 1417-1426.
DOI: 10.1016/j.triboint.2010.11.013
Google Scholar