[1]
Sung-Jin Kim, Farkhod R. Turaev, Dong-Won Lee, Jung-Yeul Yun, Process optimization for production of ultrafine titanium carbonitride by magnesium reduction. - Journal of the Ceramic Society of Japan, Vol. 117, No. 1365, (2009), 600 – 603.
DOI: 10.2109/jcersj2.117.600
Google Scholar
[2]
M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants-a review, Progress in Materials Science 54, (2009), 397–425.
DOI: 10.1016/j.pmatsci.2008.06.004
Google Scholar
[3]
Farkhod R. Turaev, Sung Bum Park, Taeho Bahn, Sung Jin Kim Characteristics of a Stack Separator Prepared from Composites of Stainless Steel and TiNx for Fuel Cells. - Journal of the Korean Physical Society, Vol. 54, No. 3, March 2009, 1091-1095.
DOI: 10.3938/jkps.54.1091
Google Scholar
[4]
Luana Marotta Reis de Vasconcellosa, Marize Varella de Oliveira et al. Porous Titanium Scaffolds Produced by Powder Metallurgy for Biomedical Applications Materials Research, 11, 3, (2008), 275-280.
Google Scholar
[5]
Ahmed Ibrahim, Faming Zhang Processing of porous Ti and Ti5Mn foams by spark plasma sintering Materials and Design 32, (2011), 146–153.
DOI: 10.1016/j.matdes.2010.06.019
Google Scholar
[6]
Fumio Watari , Atsuro Yokoyama, Mamoru Omori et al. Biocompatibility of materials and development to functionally draded implant for bio-medical application Composites Science and Technology 64, Issue 6, (2004), 893-908.
DOI: 10.1016/j.compscitech.2003.09.005
Google Scholar
[7]
F Watari, A Yokoyama, F Saso, M Uo, H Matsuno and T Kawasaki, Biocompatibility of titanium/hydroxyapatite and titanium/cobalt functionally graded iplants, W. A Kayser, Editor, FunctionallyGraded Materials 1998, Trans Tech Publications, Zurich, (1999).
DOI: 10.4028/www.scientific.net/msf.308-311.356
Google Scholar
[8]
Bellosi A, Monteverde F, Sciti D. Fast densification of ultra-high-temperature ceramics by spark plasma sintering. Int J Appl Ceram Technol 3(1), (2006), 32–40.
DOI: 10.1111/j.1744-7402.2006.02060.x
Google Scholar
[9]
Dustin M. Hulbert, Dongtao Jiang The synthesis and consolidation of hard materials by spark plasma sintering Int. Journal of Refractory Metals & Hard Materials 27, (2009), 367–375.
DOI: 10.1016/j.ijrmhm.2008.09.011
Google Scholar
[10]
Eriksson M, Salamon D, Nygren M, Shen Z. Spark plasma sintering and deformation of Ti–TiB2 composites. Mater Sci Eng A 475: 10, (2008), 1–4.
DOI: 10.1016/j.msea.2007.01.161
Google Scholar
[11]
Shehata Aly M. Pore size effect on the tensile properties of open-cell stainless steel metallic foams. Proceeding of Metals Processing and Manufacturing Conference MPM, Cairo, Egypt, (2000), 19–22.
Google Scholar
[12]
J.Z. Liang, F.H. Li Heat transfer in polymer composites filled with inorganic hollow micro-spheres: A theoretical model Polymer Testing 26, Issue 8, (2007), 1025-1030.
DOI: 10.1016/j.polymertesting.2007.07.002
Google Scholar
[13]
Jun-Feng Song, Samuel Low, David Pitchure et al. Establishing a worldwide unified Rockwell hardness scale using standard diamond indenters Measurement 24, Issue 4, (1998), 197-205.
DOI: 10.1016/s0263-2241(98)00052-9
Google Scholar
[14]
Barrie S. Shabel A simple procedure for calculating Rockwell hardness conversion rela-tionships for metallic alloys Materials Science and Engineering 95, (1987), 209-216.
DOI: 10.1016/0025-5416(87)90512-x
Google Scholar
[15]
Masato Ito, Daigo Setoyama, Junji Matsunaga Electrical and thermal properties of titanium hydrides Journal of Alloys and Compounds 420, (2006), 25–28.
DOI: 10.1016/j.jallcom.2005.10.032
Google Scholar