Effect of Annular Electromagnetic Stirring Process on Solidification Microstructure of 7075 Aluminium Alloy

Article Preview

Abstract:

7075 aluminum alloy melt conditioned by annular electromagnetic stirring(A-EMS) was cast in the TP1 mould, and the effects of pouring temperature, stirring current, stirring frequency and annular gap width on microstructures were analyzed. The A-EMS process exhibits superior grain refinement and remarkable structure homogeneity compared with conventional casting(N-EMS) and conventional electromagnetic stirring casting(EMS). With the increasing of the pouring temperature, the microstructures of the sample conditioned by A-EMS are inclined to become coarse and non-uniform compared with which have the more serious inclination conditioned by N-EMS. With the stirring current or stirring frequency increasing, the rosette-like or dendritic primary α(Al) phase decreases significantly on the sample microstructures, and the non-dendritic primary α(Al) phase is finer and more spherical. Narrow annular gap is advantageous to obtain uniformly fine spherical solidification microstructures.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Pages:

2418-2426

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.G. Kang, J.W. Bae and B.M. Kim: J. Mater. Process. Technol. Vol. 187-188 (2007), p.344.

Google Scholar

[2] E.J. Zoqui, M. Paes and E. Es-Sadiqi: J. Mater. Process. Technol. Vol.120 (2002), p.365.

Google Scholar

[3] S. Steinbach and L. Ratke: Mater. Sci. Eng. A. Vol. 413-414 (2005), p.200.

Google Scholar

[4] Y.L. Bai: Rheo-diecasting of Semi-solid A356 Aluminum Alloy and Its Numerical Simulation. (Ph.D.,University of Science and Technology Beijing, China 2007). (in Chinese).

Google Scholar

[5] W.M. Mao, Y.L. Bai and G.X. Tang: J. Mater. Sci. Technol. Vol.22 (2006), p.447.

Google Scholar

[6] Z.F. Zhang, J. Xu, Y.L. Bai and L.K. Shi: Proceeding of the 10th International Conference on Semi-Solid Processing of Alloys and Composites ( Aachen, 2008), p.185.

Google Scholar

[7] J. Xu, Z.F. Zhang, Y.L. Bai and L.K. Shi, China Patent, CN200810116181.9. (2008) (in Chinese).

Google Scholar

[8] Y.L. Bai, J. Xu, Z.F. Zhang and L.K. Shi: Trans. Nonferrous Met. Soc. China. Vol. 19 (2009), p.1104.

Google Scholar

[9] G.L. Zhu, J. Xu, Z.F. Zhang and Y.L. Bai: Acta Metall. Sin. (Engl. Lett.). Vol. 22 (2009), p.408.

Google Scholar

[10] M.O. Tang, J. Xu, Z.F. Zhang and Y.L. Bai: Trans. Nonferrous Met. Soc. China. Vol.21 (2011), p.1123.

Google Scholar

[11] M. Lalpoor, D.G. Eskin, G. ten Brink and L. Katgerman: Mater. Sci. Eng. A. Vol.527 (2010), p.1828.

Google Scholar

[12] TP-1, Standard Test Procedure for Aluminium Alloy Grain Refiners(The Aluminium Association, Washington, DC 1987).

Google Scholar

[13] Z. Fan, M. Xia, H. Zhang and G. Liu: Int. J. Cast. Metal. Res. Vol. 22 (2009), p.1.

Google Scholar

[14] M.C. Flemings: Metall Trans. A. Vol. 22 (1991), p.957.

Google Scholar

[15] D. Liu and J.Z. Cui: Foundry Technology. Vol. 18(1998), p.44(in Chinese).

Google Scholar

[16] D. Spencer and M.C. Flemings: Metall Trans. Vol. 3 (1972), p.1925.

Google Scholar

[17] Z. Fan, X. Fang and S. Ji: Mater. Sci. Eng. A. Vol. 412 (2005), p.298.

Google Scholar

[18] R.D. Doherty, H.J. Lee and E.A. Feest: Mater. Sci. Eng. A. Vol. 65 (1984), p.181.

Google Scholar

[19] M.C. Flemings, W.L. Jonson: Proceedings of the 65th World Foundry Congress.(Gyeongju, Korea, 2002). p.3.

Google Scholar

[20] B. Chalmers: J. Aust. Inst. Met. Vol. 8 (1963), p.255.

Google Scholar