Preparation of Ammonium Tungstophosphate-Calcium Alginate Composite Adsorbent and its Adsorption Properties of Rubidium

Article Preview

Abstract:

A spherical composite adsorbent AWP-CaALG was prepared by the calcium alginate(CaALG) and ammonium tungstophosphate(AWP). The composite adsorbent was characterized by XRD, FT-IR and TG-DTG-DTA, it proves that the crystal structure of AWP isn’t destroyed and the adsorption ability of the composite adsorbent can be retained up to 120°C. Effects of adsorbent dosage, adsorption time, pH, temperature, concentration of Rb and K were investigated. The results show that the adsorption capacity of composite adsorbent to rubidium is 20.64mg/g.The adsorption equilibrium is gained after 24h. When the concentration ratio of K to Rb is 16, the adsorption rate of Rb can still be up to 94.1% and the Rb/K separation coefficient is 86.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Pages:

2524-2528

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.N. Li: Acta Physical Sinica, Vol. 53 (2005) No. 1, p.248(In Chinese).

Google Scholar

[2] A. Ostaszyński, J. Wielgat and T. Urbański: Tetrahedron, Vol. 25 (1969) No. 9, p. (1929).

Google Scholar

[3] D. G. Onn, G. Foley and J. Fischer: Physical Review B, Vol. 19 (1979) No. 12, p.6474.

Google Scholar

[4] W.J. Zhao: Optoelectronic Technology, Vol. 19 (1999) No. 2, p.93(In Chinese).

Google Scholar

[5] F. A. Khorshid, G. A. Raouf, S. M. El-Hamidy and G. S. Al-amri: Life Science Journal, Vol. 8 (2011) No. 3, p.534.

Google Scholar

[6] H.X. Niu: Chinese Journal Of Rare Metals, Vol. 30 (2006) No. 4, p.523(In Chinese).

Google Scholar

[7] Y.N. Qin: China Molybdenum Industry, Vol. 25 (2001) No. 5, p.19(In Chinese).

Google Scholar

[8] R. Chakravarty, R. Ram, K. Pillai, Y. Pamale, R. Kamat and A. Dash, A.: Journal of Chromatography A, Vol. 1220(2011), p.82.

Google Scholar

[9] H. Mimura, Y. Wu, W. Yufei, Y. Niibori, I. Yamagishi, M. Ozawa, T. Ohnishi and S. Koyama: Nuclear Engineering and Design, Vol. 241(2011), p.4750.

DOI: 10.1016/j.nucengdes.2011.03.031

Google Scholar

[10] X. Ye, Z. Wu, W. Li, H. Liu, Q. Li, B. Qing, M. Guo and F. Ge: Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 342 (2009) No. 1, p.76.

DOI: 10.1016/j.colsurfa.2009.04.011

Google Scholar

[11] T. Tranter, R. Herbst, T. Todd, A. Olson and H. Eldredge: Advances in Environmental Research, Vol. 6 (2002) No. 2, p.107.

Google Scholar

[12] Y. Park, Y. C. Lee, W. S. Shin and S. J. Choi: Chemical Engineering Journal, Vol. 162 (2010) No. 2, p.685.

Google Scholar

[13] T. Tranter, R. Herbst, T. Todd, A. Olson and H. Eldredge: Advances in Environmental Research, Vol. 7 (2003) No. 4, p.913.

Google Scholar

[14] D. Banerjee, M. Rao, J. Gabriel and S. Samanta: Desalination, Vol. 232 (2008) No. 1, p.172.

Google Scholar

[15] C.J. Zhang, N.N. Zhang, Q. Wang and P. Zhu: Dyeing & Finishing, Vol. 37 (2011) No. 8, p.1(In Chinese).

Google Scholar