Effects of the Content of ZrO2 Nanoparticles on the Microstructure and Properties of Al2O3-TiC-ZrO2 Micro-Nano-Composites

Article Preview

Abstract:

Al2O3-TiC-ZrO2 micro-nano-composites with addition of ZrO2 nanoparticles were fabricated by vaccum hot pressing with Mo and Ni powders as sintering aids. Results showed that the mechanical properties and relative density of the micro-nano-composites increased firstly and then decreased with the increase in the content of ZrO2 nanoparticles. Al2O3-TiC-ZrO2 micro-nano-composites containing about 4vol% ZrO2 nanoparticles have the highest synthetical properties, its flexural strength, Vicker's hardness, Fracture Toughness and relative density are 920MPa, 20.4GPa, 6.3MPa•m1/2 and 98.9%, respectively. The microstructural characterization revealed that adding proper ZrO2 nanoparticles to the matrix can greatly strengthen the grain boundaries, causing more transgranular fractures and consuming more fracture energy. The excessive amount of ZrO2 nanoparticles may bring about agglomeration effect, leading to the decrease of properties of the micro-nano-composites.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Pages:

304-307

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Grzesik: Wear Vol. 266 (2009), p.1021.

Google Scholar

[2] J. Barry, G. Byrne: Wear Vol. 247 (2001), p.139.

Google Scholar

[3] J. Zhao, X.L. Yuan and Y.H. Zhou: Mater. Sci. Eng. A Vol. 527 (2010), p.1844.

Google Scholar

[4] J.H. Gong, H.Z. Miao, Z. Zhao and Z.D. Guan: Mater. Lett. Vol. 49 (2001), p.235.

Google Scholar

[5] B. Zhang, F. Boey: Mater. Lett. Vol. 43 (2000), p.197.

Google Scholar

[6] S. Zbigniew, Rak and J. Czechowski: J. Euro. Ceram. Soc. Vol. 18 (1998), p.373.

Google Scholar

[7] H.L. Liu, C.Z. Huang, J. Wang and X.Y. Teng: Mater. Res. Bull. Vol. 41 (2006), p.1215.

Google Scholar

[8] C.X. Liu, J.H. Zhang, X.H. Zhang and J.L. Song: Mater. Sci. Eng. A Vol. 465 (2007), p.72.

Google Scholar

[9] J.X. Deng, T.K. Cao and L.L. Liu: J. Euro. Ceram. Soc. Vol. 25 (2005), p.1073.

Google Scholar

[10] B.Q. Liu, C.Z. Huang, M.L. Gu, H.T. Zhu and H.L. Liu: Mater. Sci. Eng. A Vol. 460-461 (2007), p.146.

Google Scholar

[11] G. Anné, S. Put, K. Vanmeensel et al: J. Euro. Ceram. Soc. Vol. 25 (2005), p.55.

Google Scholar

[12] K. Niihara: J. Ceram. Soc. Jpn. Vol. 99 (1991), p.974.

Google Scholar

[13] J. Wang, Y. Liu, P. Zhang, J.W. Ye and M. J. Tu: Mater. Des. Vol. 30 (2009), p.2222.

Google Scholar

[14] A.G. Evans, E.A. Charles: J. Am. Ceram. Soc. Vol. 59 (1976), p.371.

Google Scholar