Preparation of PMAM-B-PNVP and its Hydrolysate by RAFT Polymerization: Structure Characterization and its CO2 Permeation Performance

Article Preview

Abstract:

Macromolecules chain transfer agents (MCTA) were synthesized through the reversible addition fragmentation chain transfer polymerization (RAFT) by using S-l-Dodecyl-S′-(α, α′-dimethyl-α-acetic acid) trithiocarbonate(MTTCD), S, S′-bis (2-hydroxyethyl-2′-dimethylacrylate) trihiocarbonate (BDATC), 2-cyanoprop-2-yl dithiobenzoate (CPDB) as the chain transfer agents, methacrylamide (MAM) as the first polymerization monomer. The results showed that the structures of the end-group of dithiocarbamates had significant effects on the activity of dithiocarbamates for the polymerization of PMAM. The derived block copolymer (PMAM-b-PNVP) was prepared by using the above mentioned polymer as macromolecular RAFT agent and NVP as the second polymerization monomer. N-vinyl-γ-sodium aminobutyrate-sodium methacrylate copolymer (VSA-MSA) containing -NH2 and -COOH as the CO2 facilitated carrier, a kind of new fixed carrier membrane material for CO2 separation, was synthesized by hydrolysis of the resulted PMAM-b-PNVP. The chemical composition and structure of PMAM-CTA, PMAM-b-PNVP, MSA-VSA were analyzed by FTIR, 1HNMR and DSC, the molecular weight and polydispersity index were analyzed by GPC. The Relative molecular mass of polymer was controllable. The polydispersity index (1.2~1.3) of the obtained polymer was narrow via using MTTCD and BDATC. The VSA-MSA/PS composite membranes were prepared. The CO2 and N2 permeation performance were tested at different pressure. The results showed that the resulted composited membrane had a CO2 permeation rate of 1.2×10-4 cm3 (STP) cm-2s-1cmHg-1 and a N2 permeation rate of 8.57×10-7 cm3 (STP) cm-2s-1cmHg-1 and an ideal CO2/ N2 selectivity of 140.02 at a feed gas pressure of 7.6 cmHg and 30 °C.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Pages:

386-397

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Kaghazchi, A. H. Gorji, Can. J. Chem. Eng. Vol.86(2008), p.1039.

Google Scholar

[2] Z. Wang, Y. Zhang, S. C. Wang, Chinese J. Chem. Eng. Vol. 10(2002), p.570.(in Chinese)

Google Scholar

[3] Z. Wang, Y. Zhang, S. C. Wang, Desalination Vol.145(2002), p.385.

Google Scholar

[4] Z. Wang, C. H. Yi, M. Li, J. X. Wang, S. C. Wang, Desalination Vol.193(2006), p.90.

Google Scholar

[5] Z. Wang, X. W. Yu, Z. H. Wei, S. J. Yuan, J. A. Zhao, J. X. Wang, J. Membrane Sci. Vol. 362(2010), p.265.

Google Scholar

[6] A. Guyot, N. Gaillard, J. Claverie, Prog. Org. Coat. Vol.57 (2006) p.98.

Google Scholar

[7] A. Laschewsky, S. Garnier, Macromolecules. Vol. 38(2005), p.7580.

Google Scholar

[8] G. Moad, J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, Macromolecules. Vol. 31(1998), p.5559.

DOI: 10.1021/ma9804951

Google Scholar

[9] C. Y. Hong, Y. Wang, X. Li, C.Y. Pan, J. Polym. Sci. Polym. Chem. Vol. 49(201i), p.3280.

Google Scholar

[10] J. Rieger, S. Boisse, G. Pembouong, P. Beaunier, B. Charleux, J. Polym. Sci. Polym. Chem. Vol. 49(2011),9. 3346.

Google Scholar

[11] J. Claverie, N. Gaillard, A. Guyot, J. Polym. Sci. Polym. Chem. Vol. 41 (2003), p.684.

Google Scholar

[12] E. Rizzardo, R. T. A. Mayadunne, J. Chiefari, J. Krstina, G. Moad, A. Postma, Macromolecules. 2000,33,243

DOI: 10.1021/ma991451a

Google Scholar

[13] A. H. E. Mueller, C. Schilli, M. Lanzendoerfer, Abstr. Pap. Am. Chem. S. Vol. 224(2002), p.475.

Google Scholar

[14] R. Bai, D. B. Hua, J. X. Zhang, W. Q. Lu, C. Y. Pan, Macromol. Chem. Phys. Vol. 205(2004), p.1125.

Google Scholar

[15] G. Moad, J. Chiefari, R. T. A. Mayadunne, C. L. Moad, E. Rizzardo, A. Postma, Macromolecules. Vol. 36(2003), p.2273.

DOI: 10.1021/ma020883+

Google Scholar

[16] R. K. Bai, D. B. Hua, W. Q. Lu, C. Y. Pan, J. Polym. Sci. Polym. Chem. Vol. 42(2004), p.5670.

Google Scholar

[17] S. Perrier, V. Jitchum, Macromolecules.Vol. 40( 2007) p.1408

Google Scholar

[18] J. T. Lai, D. Filla, R. Shea, Macromolecules. Vol.35(2002), p.6754.

Google Scholar

[19] G. Moad, J. Chiefari, Y. K. Chong, J. Krstina, R.T. A. Mayadunne, A. Postma, Polym. Int. Vol. 49(2000), p.993.

DOI: 10.1002/1097-0126(200009)49:9<993::aid-pi506>3.0.co;2-6

Google Scholar

[20] C.L. McCormick, A. E. Smith, X. W. Xu, Prog. Polym. Sci. Vol. 35(2010), p.45.

Google Scholar

[21] S. Perrier, T. P. Davis, A. J. Carmichael, D. M. Haddleton, Eur. Polym. J. Vol. 39(2003), p.417.

Google Scholar

[22] Q. F. An, J. W. Qian, L. Y. Yu, Y. G. Luo, X. Z. Liu, Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 43(2005), p.1973.

Google Scholar

[23] Z. Ge, Y.J. Luo, J. Appl. Polym. Sci. Vol. 114(2009), p.457.

Google Scholar

[24] F. P. Wu, Q. L. Cui, E. J. Wang, Polymer Vol. 52(2011), p.1755.

Google Scholar

[25] C. L. Petzhold, M. L. T. Sordi, I. C. Riegel, M. A. Ceschi, A. H. E. Muller. Eur. Polym. J. Vol.46(2010), p.36

Google Scholar

[26] M. D. Zammit, T. P. Davis, D. M. Haddleton, Macromolecules. Vol. 29(1996), p.492.

Google Scholar

[27] C. Barner-Kowollik, S. Saricilar, R. Knott, T. P. Davis, J. P. A. Heuts, Polymer. Vol.44 (2003), p.5169.

DOI: 10.1016/s0032-3861(03)00520-2

Google Scholar