Catalytic Dehydrogenation Reaction Activity of Cyclohexanol over Cu2O/Mg(OH)2 Catalysts

Article Preview

Abstract:

A series of supported Cu2O catalysts on Mg(OH)2 or γ-Al2O3 were prepared by coprecipitation-chemical reduction combined with impregnation using Cu(NO3)2 as precursor salt and hydrazine hydrate as the reducing agent. The crystal phase characteristics and specific suface area of the samples have been characterized by means of X-ray powder diffraction (XRD) and BET method. Catalytic dehydrogenation reaction activity of cyclohexanol over the catalysts was investigated. Results showed Cu2O is the main active component over the supported catalysts. Cu2O Grain has good dispersion in nanoscale. Acid or alkali type of the support has great influence on cyclohexanol dehydrogenation activity of supported Cu2O catalysts. There have cyclohaxene and cyclohexanone products over the supported catalysts. The reaction activity of Cu2O/ Mg(OH)2 catalysts changed with hydrazine hydrate volume. Cyclohexanol conversion and cyclohexanone selectivity can reach to 97.2% and 71.2%.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Pages:

711-716

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Ritz, H. Fuchs, H. Kieczka, W. C. Moran and Caprolactam, in: F. Th. Cambell, R. Pfefferkorn, and J. R. Rounsaville (Eds), Ullann's Encyclopedia of Industrial Chemistry vol. A5, edtied by Wiley-VCH, Weinheim, (1986), p.31.

DOI: 10.1002/14356007.a05_031.pub2

Google Scholar

[2] R. A. Sheldon, R. A. Van Santen: Catalytic Oxidation: Principles and Applications, edtied by World Scientific Publishing, London, (1995), p.196.

Google Scholar

[3] A. F. Masters, James K. Beattie and Boa AdrianaL. Catal. Lett. Vol. 75 (2001), p.159.

Google Scholar

[4] H. A. Wittcof and B. G. Reuben: Industrial Organic Chemical, edtied by John Wiley & Sons, Inc., (1996), p.253.

Google Scholar

[5] A. H. Cumberley and M. B. Mueller: J. Am. Chem. Soc. Vol. 63 (1947), p.1535.

Google Scholar

[6] D. V. Cesar, C. A. Perez, V. M. M. Salim and M. Schmal: Appl. Catal. A: Gen. Vol. 176 (1999), p.205.

Google Scholar

[7] V. Z. Fridman and A. A. Davydow: J. Catal. Vol. 195 (2000), p.20.

Google Scholar

[8] V. Z. Fridman and A. A. Davydow: J. Catal. Vol. 208 (2002), p.487.

Google Scholar

[9] V. Z. Fridman, A. A. Davydow and K. Titievshy: J. Catal. Vol. 222(2004), p.545.

Google Scholar

[10] V. Siva Kumar, S. Sreevardhan Reddy, A. H. Padmasri, B. David Raju, I. Ajitkumar Reddy and K. S. Rama Rao: Catal. Commun. Vol. 28(2007), p.899.

DOI: 10.1016/j.catcom.2006.09.019

Google Scholar

[11] D. Ji, W. Zhu, Z. Wang and G. Wang: Catal. Commun. Vol. 8(2007), p.1891.

Google Scholar

[12] B. M. Nagaraja, V. Siva Kumar, V. Shashikala, A. H. Padmasri, S. Sreevardhan Reddy, B. David Raju and K. S. Rama Rao: J. Mol. Catal. A: Chem. Vol. 8 (2004), p.339.

DOI: 10.1016/j.molcata.2003.11.046

Google Scholar

[13] B. M. Nagaraja, A. H. Padmasari, P. Seetharamulu, K. Hari Prasad Reddy, B. David Raju and K. S. Rama Rao: J. Mol. Catal. A: Chem. Vol. 278(2007), p.29.

Google Scholar

[14] K. Lalitha, G. Sadanandam and V. Durga: J. Phys. Chem. C Vol. 114 (2010), p.22181.

Google Scholar

[15] B. Srinivas, K. Lalitha, P. A. K. Reddy, G. Sadanandam, V. D. Kumari, M. Subrahmanyam and B. Ranjan. De: Res Chem. Intermed. Vol. 27 (2011), p.1069.

Google Scholar

[16] A. Romero, A. Santos, D. Escrig and E. Simon: Appl. Catal. Vol. 392 (2011), p.19.

Google Scholar