Cu(OH)2/N-TiO2 Compound Heterojunction Photcocatalyst: Preparation, Characterization and Photocatalytic Properties

Article Preview

Abstract:

Cu(OH)2/N-TiO2 compound heterojunction photcocatalyst was prepared via a facile precipitation method. The as-synthesized samples were characterized by means of X-ray diffraction (XRD), field-emission transmission electron microscope (FE-SEM), ultraviolet-visible light (UV-vis) absorbance spectra technologies. The results suggest the as-obtained samples are spherical structure with the diameter of approximately 10-20 nm, the absorbance intensity in the visible light range increased with the amount of deposited increased. Photocatalytic activities of samples were investigated under visible light and methyl orange (MO) acted as simulation pollutants. The catalytic ablity of the synthesized photocatalysts under visible light irradiation showed higher than that of N-P25(TiO2). The remarkable photocatalytic activities are due to the high-quality of composites structure and the driving force for electron transfer in nanoparticle.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Pages:

774-778

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. O'Regan, M. Gratzel: Nature Vol. 353 (1991), p.737.

Google Scholar

[2] M. Grȁtzel: Nature Vol. 414 (2001), p.338.

Google Scholar

[3] A. Fujishama, K. Honda: Nature Vol. 298 (1972), p.37.

Google Scholar

[4] S. U. M. Khan, J. Akikusa: Int. J. Hydrogen Energy Vol. 27 (2002), p.863.

Google Scholar

[5] J. M. Hermann, C. Duchamp, M. Karkmaz, B. T. Hoai, H. Lachbav, E. Puzenat, C. Guillard: J. Hazard. Mater. Vol. 146 (2007), p.624.

Google Scholar

[6] O. Varghese, M. Paulose, T. L. Tempa, G. C. Varghese: Nano Lett. Vol. 9 (2009), p.731.

Google Scholar

[7] R. Asahi, T. Morikawana, T. Ohwaki, K. Aoki, Y. Taga: Science Vol. 293 (2001) , p.269.

Google Scholar

[8] W. Teoh, R. Amal, L. Mȁdler, S. Pratsinis: Catal. Today Vol. 120 (2007), p.203.

Google Scholar

[9] J. Yu, J. Yu, W. Ho, Z. Jiang, L. Zhang: Chem. Mater. Vol. 14 (2002), p.3808.

Google Scholar

[10] M. Zhou, J. Yu: J. Hazard. Mater. Vol. 152 (2008), p.1229.

Google Scholar

[11] C. Burda, Y. B. Lou, X. B. Chen, A. C. S. Samia, J. Stout, J. L. Gole: Nano. Lett. Vol. 3 (2003), p.1049.

Google Scholar

[12] M. Sathish, B. Viswanathan, R. Viswanath, S. Chinnakonda, S. Gopinath: Chem. Mater. Vol. 17 (2005), p.6349.

Google Scholar

[13] M. Mrowetz, W. Balcerski, A. J. Colussi, M. R. Hoffmann: J. Phys. Chem. B Vol. 108 (2004) p.17269.

Google Scholar

[14] N. L. Wu, M. S. Lee: Int. J. Hydrogen Energy, Vol. 29 (2004), p.1601.

Google Scholar

[15] L. S. Yoong, F. K. Chong, K. D. Binay: Energy, Vol. 34 (2009), p.1652.

Google Scholar

[16] S. S. Zhang, S. Q. Zhang, F. Peng, H. M. Zhang, H. W. Liu, H. J. Zhao: Electrochem. Commun. Vol. 13 (2011), p.861.

Google Scholar

[17] L. Huang, S. S. Zhang, F. Peng, H. J. Wang, H. Yu, J. Yang, S. Q. Zhang H. J. Zhao: Scripta Materialia, Vol. 63 (2010) , p.159.

Google Scholar

[18] T. Sreethawong, S. Yoshikawa: Catal. Commun. Vol. 6 (2005), p.661.

Google Scholar

[19] J. Bandara, C. P. K. Udawattab, C. S. K. Rajapaksea: Photochem. Photobiol. Sci. Vol. 4 (2005), p.857.

Google Scholar

[20] H. J. Choi, M. Kang: Int. J. Hydrogen Energy, Vol. 32 (2007), p.3841.

Google Scholar

[21] J. G. Yu, J. R. Ran: Energy Environ. Sci., Vol. 4 (2011), p.1364.

Google Scholar

[22] X. S. Zhou, F. Peng, H. J. Wang, H Yu: J. Solid State Chem., Vol. 4 (2011), p.3002.

Google Scholar

[23] P. Chen, W. Li, T. L. Zhou, Y. P. Jin, M.Y. Gu: J. Photochem. Photobiol. A Chem. Vol. 168 (2004), p.97.

Google Scholar