Synthesis and Characterization of Bridged Amine-Functionalized Mesoporous Organosilica Materials

Article Preview

Abstract:

The periodic bridged amine-functionalized mesoporous organosilica (BAFMOs) was synthesized by condensation of bridged silicon precursor 1,2-Bis(triethoxysilyl)-ethane (BTESE) and Bis(3-(methylamino)propyl)-trimethoxysilane (BTMSPMA) under acidic conditions with the aid of NaCl and ethanol. A triblock copolymer P123 was used as template. X-ray diffraction and transmission electron microscopy revealed that the resultant BAFMOs materials possess ordered mesoporous. N2 sorption showed that the specific surface area gradual decreased, from 970m2/g to 795m2/g, whereas the average pore size increased, from 3.7 nm to 5.4 nm as the amount of BTMSPMA increased. 13C CP MAS NMR and 29Si MAS NMR confirmed the retaining of the Si-C as well as the existing of the amino in the silica skeleton. The analytical potential of the materials is demonstrated with separation of isomeric molecules in reverse phase chromatography mode compared with commercial C18 column.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Pages:

799-814

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Sage, J. H. Clark and D. J. Macquarrie, J. Mol. Catal. A: Chem. Vol. 198 (2003), p.349.

Google Scholar

[2] M. Alain, G. Isabelle and B. J. Claude, Raman Spectrosc. Vol. 33 (2002), p.381.

Google Scholar

[3] M. Ganschow, M. Wark and D. Wohrle, Angew. Chem. Int. Ed. Vol. 39 (2000), p.161.

Google Scholar

[4] L. M. Kalogeras, V. D. Aglaia and E. R. Neagu, Mat. Res. Innovat. Vol. 4 (2001), p.322.

Google Scholar

[5] T. Coradin, J. Larionova and A. A. Smith, Adv. Mater. Vol. 14 (2002), p.896.

Google Scholar

[6] C. Yu, B. Tian and D. Y. Zhao, Curr. Opinion Solid State Mater. Sci. Vol. 7 (2003), p.191.

Google Scholar

[7] A. Sayari and S. Hamoudi, Chem. Mater. Vol. 13 (2001), p.3151.

Google Scholar

[8] F. Hoffmann, M. Cornelius, J. Morell and M. Froba, Angew. Chem. Int. Ed. Vol. 45 (2006), p.3216.

Google Scholar

[9] F. Hoffmann, M. Cornelius, J. Morell and M. Froba, J. Nanosci. Nanotechnol. Vol. 6 (2006), p.265.

Google Scholar

[10] B. Haton, K. Landskron, W. Whitnall, D. Perovic and G. A. Ozin, Acc. Chem. Res. Vol. 38 (2005), p.305.

Google Scholar

[11] L. Xu, Y. Q. Feng and S. L. Da, Chinese J Anal. Chem. Vol. 32 (2004), p.374.

Google Scholar

[12] J. Liu, Q. H. Yang and L. Zhang, Progress in Chem. Vol. 17 (2005), p.809.

Google Scholar

[13] S. Inagaki, S. Guan and Y. Fukushima, J. Am. Chem. Soc. Vol. 121 (1999), p.9611.

Google Scholar

[14] B. J. Melde, B. T. Holland and C. F. Blanford, Chem. Mater. Vol. 11 (1999), p.3302.

Google Scholar

[15] C. Yoshina-Ishii, T. Asefa and N. Coombs, Chem. Commun. (1999), p.2539.

Google Scholar

[16] K. J. Shea and D. A. Loy, Chem. Mater. Vol. 13 (2001), p.3306.

Google Scholar

[17] F. Hoffmann, M. Cornelius and J. Morell, J. Nanosci. Nanotechnol. Vol. 6 (2006), p.265.

Google Scholar

[18] S. Huh, J. W. Wiench, J. C. Yoo, M. Pruski and V. S. Y. Lin, Chem. Mater. Vol. 15 (2003), p.4247.

Google Scholar

[19] T. Salesch, S. Bachmann, S. Brigger, R. R. Schaefer, K. Albert, S. Steinbrecher, E. Plies, A. Mehdi, C. Reye, R. J. P. Corriu and E. Linder, Adv. Funct. Mater. Vol. 12 (2002), p.134.

DOI: 10.1002/1616-3028(20020201)12:2<134::aid-adfm134>3.0.co;2-a

Google Scholar

[20] W. H. Zhang, X. B. Lu, J. H. Xiu, Z. L. Hua, L. X. Zhang, M. Robertson, J. L. Shi, D. S. Yan and J. D. Holmes, Adv. Funct. Mater. Vol. 14 (2004), p.544.

Google Scholar

[21] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature. Vol. 359 (1992), p.710.

Google Scholar

[22] Y. Goto and S. Inagaki, Chem. Commun. (2002), p.2410.

Google Scholar

[23] S. Guan, S. Inagaki, T. Ohsuna and O. Terasaki, J. Am. Chem. Soc. Vol. 122 (2000), p.5660.

Google Scholar

[24] M. Kruk, M. Jaroniec, S. Guan and S. Inagaki, J. Phys. Chem. B Vol. 105 (2001), p.681.

Google Scholar

[25] T. Asefa, M. J. McLacchlan, N. Coombs and G. A. Ozin, Nature Vol. 402 (1999), p.867.

Google Scholar

[26] O. Dag, C. Y. Ishii, T. Asefa, M. J. MacLachlan, H. Grondey and N. Coombs, Adv. Func. Mater. 11 (2001), p.213.

Google Scholar

[27] S. R. Hall, C. E. Fowler, B. Lebeau and S. Mann, Chem. Commun. (1999), p.201.

Google Scholar

[28] O. Muth, C. Schellbach and M. Froba, Chem. Commun. (2001) (2032).

Google Scholar

[29] W. Guo, J. Park, M. Oh, H. Jeong, W. J. Cho, I. Kim and C. S. Ha, Chem. Mater. Vol. 15 (2003), p.2295.

Google Scholar

[30] W. Guo, I. Kim and C.S. Ha, Chem. Commun. (2003) 2692.

Google Scholar

[31] M. A. Wahab, I. Kim and C. S. Ha. Micropor. Mesopor. Mater. Vol. 69 (2004), p.19.

Google Scholar

[32] M. A. Wahab, I. Imae, Y. Kawakami and C. S. Ha. Chem. Mater. Vol. 17 (2005), p.2165.

Google Scholar

[33] T. Asefa, M. Kruk, M. J. MacLachlan, N. Coombs, H. Grondey, M. Jaroniec and G. A. Ozin, J. Am. Chem. Soc. Vol. 123 (2001), p.8520.

DOI: 10.1021/ja0037320

Google Scholar

[34] Q. Yang, M. P. Kapoor and S. Inagaki, J. Am. Chem. Soc. Vol. 124 (2002), p.9694.

Google Scholar

[35] M. C. Burleigh, M. A. Markowitz, M. S. Spector and B. P. Gaber, J. Phys. Chem. B Vol. 105 (2001), p.9935.

Google Scholar

[36] M. C. Burleigh, S. Dai, E. W. Hagaman and J. S. Lin, Chem. Mater. Vol. 13 (2001), p.2537.

Google Scholar

[37] M. C. Burleigh, M. A. Markowitz, M. S. Spector and B. P. Gaber, Chem. Mater. Vol. 13 (2001), p.4760.

Google Scholar

[38] M. C. Burleigh, M. A. Markowitz, M. S. Spector and B. P. Gaber. Langmuir Vol. 17 (2001), p.7923.

Google Scholar

[39] M. A. Wahab, I. Kim and C. S. Ha. J. Solid State Chem. Vol. 177 (2004), p.3439.

Google Scholar

[40] H. Zhu, D. J. Jones, J. Zajac, R. Dutartre, M. Rhomari and J. Roziere, Chem. Mater. Vol. 14 (2002), p.4886.

Google Scholar

[41] G. P. Knowles, J. V. Graham, S. W. Delaney and A. L. Chaffee, Fuel Processing Tech. Vol. 86 (2005), p.1435.

Google Scholar

[42] A. Calvo, M. Joselevich and F. J. Williams, Micropor. Mesopor. Mater. Vol. 121 (2009), p.67.

Google Scholar

[43] M. Luechinger, R. Prins and G. D. Pirngruber, Micropor. Mesopor. Mater. Vol. 85 (2005), p.111.

Google Scholar

[44] Sujandi, E. A. Prasetyanto, S. C. Lee and S. E. Park, Micropor. Mesopor. Mater. Vol. 118 (2009), p.134.

Google Scholar

[45] K. Z. Hossain and L. Mercier, Adv. Mater. Vol. 14 (2002), p.1053.

Google Scholar

[46] D. J. Kim, J. S. Chung, W. S. Ahn, G. W. Kang and W. J. Cheong, Chem. Lett. Vol. 33 (2004), p.422.

Google Scholar

[47] V. Rebbin, R. Schmidt and M. Froba, Angew. Chem. Int. Ed., Vol. 45 (2006), p.5210.

Google Scholar

[48] G. R. Zhu, Q. H. Yang and C. Li, Chinese J. Chrom. Vol. 25 (2007), p.505.

Google Scholar

[49] L. Zhang, J. Liu, J. Yang, Q. H. Yang and C. Li, Micropor. Mesopor. Mater. Vol. 109 (2008), p.172.

Google Scholar

[50] A. S. M. Chong and X. S. Zhao, J. Phys. Chem. B, Vol. 107 (2003), p.650.

Google Scholar

[51] M. C. Burleigh, M. A. Markowitz, S. Jayasundera, M. S. Spector, C. W. Thomas and B. P. Gaber, J. Phys. Chem. B Vol. 107 (2003), p.12628.

Google Scholar

[52] J. Liu, Q. H. Yang, M. P. Kapoor, N. Setoyama, S. Inagaki, J. Yang and L. Zhang, J. Phys. Chem. B Vol. 109 (2005), p.12250.

Google Scholar

[53] Q. H. Yang, Y. Li, L. Zhang, J. Yang, J. Liu and C. Li, J. Phys. Chem. B Vol. 108 (2004), p.7934.

Google Scholar

[54] G. R. Zhu, Q. H. Yang, D. Jiang, J. Yang, L. Zhang Y. Li and C. Li, J. Chromatogr. A Vol. 1103 (2006), p.257.

Google Scholar

[55] M. Etienne and A. Walcarius, Talanta Vol. 59 (2003), p.1173.

Google Scholar

[56] E. Leontidis, Curr. Opinion Colloid Interf. Sci. Vol. 7 (2002), p.81.

Google Scholar

[57] C. Yu, B. Tian, J. Fan, G. D. Stucky and D. Y. Zhao, Chem. Commun. (2001), p.2726.

Google Scholar

[58] L. Zhang, Q. H. Yang, W. Zhang, Y. Li, J. Yang, D. Jiang, G. R. Zhu and C. Li, J. Mater. Chem. Vol. 15 (2005), p.2562.

Google Scholar

[59] J. T. A. Jones, C. D. Wood, C. Dickinson and Y. Z. Khimyak, Chem. Mater. Vol. 20 (2008), p.3385.

Google Scholar

[60] M. A. Wahab, W. Guo, W. J. Cho and C. S. Ha, J. Sol-Gel Sci. Technol. Vol. 27 (2003), p.333.

Google Scholar

[61] D. Coutinho, C. R. Xiong and J. Kenneth, Micropor. Mesopor. Mater. Vol. 108 (2008), p.86.

Google Scholar

[62] S. R. Zhai, I. Kim and C. S. Ha, J. Solid State Chem. Vol. 181 (2008), p.67.

Google Scholar

[63] H. M. Kao, C. H. Liao and A. Palani, Micropor. Mesopor. Mater. Vol. 113 (2008), p.212.

Google Scholar

[64] E. B. Cho and D. Kim, Micropor. Mesopor. Mater. Vol. 113 (2008), p.530.

Google Scholar

[65] X. Wang, K. S. K. Lin, J. C. C. Chan and S. Cheng, J. Phys. Chem. B Vol. 109 (2005), p.1763.

Google Scholar

[66] Kimata K, Iwaguchi K, Orishi S, Jinno K, Eksteen R, Hosoya K and Tanaka N, J. Chromatogr. Sci. Vol. 27 (1989), p.721.

Google Scholar