[1]
V. Sage, J. H. Clark and D. J. Macquarrie, J. Mol. Catal. A: Chem. Vol. 198 (2003), p.349.
Google Scholar
[2]
M. Alain, G. Isabelle and B. J. Claude, Raman Spectrosc. Vol. 33 (2002), p.381.
Google Scholar
[3]
M. Ganschow, M. Wark and D. Wohrle, Angew. Chem. Int. Ed. Vol. 39 (2000), p.161.
Google Scholar
[4]
L. M. Kalogeras, V. D. Aglaia and E. R. Neagu, Mat. Res. Innovat. Vol. 4 (2001), p.322.
Google Scholar
[5]
T. Coradin, J. Larionova and A. A. Smith, Adv. Mater. Vol. 14 (2002), p.896.
Google Scholar
[6]
C. Yu, B. Tian and D. Y. Zhao, Curr. Opinion Solid State Mater. Sci. Vol. 7 (2003), p.191.
Google Scholar
[7]
A. Sayari and S. Hamoudi, Chem. Mater. Vol. 13 (2001), p.3151.
Google Scholar
[8]
F. Hoffmann, M. Cornelius, J. Morell and M. Froba, Angew. Chem. Int. Ed. Vol. 45 (2006), p.3216.
Google Scholar
[9]
F. Hoffmann, M. Cornelius, J. Morell and M. Froba, J. Nanosci. Nanotechnol. Vol. 6 (2006), p.265.
Google Scholar
[10]
B. Haton, K. Landskron, W. Whitnall, D. Perovic and G. A. Ozin, Acc. Chem. Res. Vol. 38 (2005), p.305.
Google Scholar
[11]
L. Xu, Y. Q. Feng and S. L. Da, Chinese J Anal. Chem. Vol. 32 (2004), p.374.
Google Scholar
[12]
J. Liu, Q. H. Yang and L. Zhang, Progress in Chem. Vol. 17 (2005), p.809.
Google Scholar
[13]
S. Inagaki, S. Guan and Y. Fukushima, J. Am. Chem. Soc. Vol. 121 (1999), p.9611.
Google Scholar
[14]
B. J. Melde, B. T. Holland and C. F. Blanford, Chem. Mater. Vol. 11 (1999), p.3302.
Google Scholar
[15]
C. Yoshina-Ishii, T. Asefa and N. Coombs, Chem. Commun. (1999), p.2539.
Google Scholar
[16]
K. J. Shea and D. A. Loy, Chem. Mater. Vol. 13 (2001), p.3306.
Google Scholar
[17]
F. Hoffmann, M. Cornelius and J. Morell, J. Nanosci. Nanotechnol. Vol. 6 (2006), p.265.
Google Scholar
[18]
S. Huh, J. W. Wiench, J. C. Yoo, M. Pruski and V. S. Y. Lin, Chem. Mater. Vol. 15 (2003), p.4247.
Google Scholar
[19]
T. Salesch, S. Bachmann, S. Brigger, R. R. Schaefer, K. Albert, S. Steinbrecher, E. Plies, A. Mehdi, C. Reye, R. J. P. Corriu and E. Linder, Adv. Funct. Mater. Vol. 12 (2002), p.134.
DOI: 10.1002/1616-3028(20020201)12:2<134::aid-adfm134>3.0.co;2-a
Google Scholar
[20]
W. H. Zhang, X. B. Lu, J. H. Xiu, Z. L. Hua, L. X. Zhang, M. Robertson, J. L. Shi, D. S. Yan and J. D. Holmes, Adv. Funct. Mater. Vol. 14 (2004), p.544.
Google Scholar
[21]
C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature. Vol. 359 (1992), p.710.
Google Scholar
[22]
Y. Goto and S. Inagaki, Chem. Commun. (2002), p.2410.
Google Scholar
[23]
S. Guan, S. Inagaki, T. Ohsuna and O. Terasaki, J. Am. Chem. Soc. Vol. 122 (2000), p.5660.
Google Scholar
[24]
M. Kruk, M. Jaroniec, S. Guan and S. Inagaki, J. Phys. Chem. B Vol. 105 (2001), p.681.
Google Scholar
[25]
T. Asefa, M. J. McLacchlan, N. Coombs and G. A. Ozin, Nature Vol. 402 (1999), p.867.
Google Scholar
[26]
O. Dag, C. Y. Ishii, T. Asefa, M. J. MacLachlan, H. Grondey and N. Coombs, Adv. Func. Mater. 11 (2001), p.213.
Google Scholar
[27]
S. R. Hall, C. E. Fowler, B. Lebeau and S. Mann, Chem. Commun. (1999), p.201.
Google Scholar
[28]
O. Muth, C. Schellbach and M. Froba, Chem. Commun. (2001) (2032).
Google Scholar
[29]
W. Guo, J. Park, M. Oh, H. Jeong, W. J. Cho, I. Kim and C. S. Ha, Chem. Mater. Vol. 15 (2003), p.2295.
Google Scholar
[30]
W. Guo, I. Kim and C.S. Ha, Chem. Commun. (2003) 2692.
Google Scholar
[31]
M. A. Wahab, I. Kim and C. S. Ha. Micropor. Mesopor. Mater. Vol. 69 (2004), p.19.
Google Scholar
[32]
M. A. Wahab, I. Imae, Y. Kawakami and C. S. Ha. Chem. Mater. Vol. 17 (2005), p.2165.
Google Scholar
[33]
T. Asefa, M. Kruk, M. J. MacLachlan, N. Coombs, H. Grondey, M. Jaroniec and G. A. Ozin, J. Am. Chem. Soc. Vol. 123 (2001), p.8520.
DOI: 10.1021/ja0037320
Google Scholar
[34]
Q. Yang, M. P. Kapoor and S. Inagaki, J. Am. Chem. Soc. Vol. 124 (2002), p.9694.
Google Scholar
[35]
M. C. Burleigh, M. A. Markowitz, M. S. Spector and B. P. Gaber, J. Phys. Chem. B Vol. 105 (2001), p.9935.
Google Scholar
[36]
M. C. Burleigh, S. Dai, E. W. Hagaman and J. S. Lin, Chem. Mater. Vol. 13 (2001), p.2537.
Google Scholar
[37]
M. C. Burleigh, M. A. Markowitz, M. S. Spector and B. P. Gaber, Chem. Mater. Vol. 13 (2001), p.4760.
Google Scholar
[38]
M. C. Burleigh, M. A. Markowitz, M. S. Spector and B. P. Gaber. Langmuir Vol. 17 (2001), p.7923.
Google Scholar
[39]
M. A. Wahab, I. Kim and C. S. Ha. J. Solid State Chem. Vol. 177 (2004), p.3439.
Google Scholar
[40]
H. Zhu, D. J. Jones, J. Zajac, R. Dutartre, M. Rhomari and J. Roziere, Chem. Mater. Vol. 14 (2002), p.4886.
Google Scholar
[41]
G. P. Knowles, J. V. Graham, S. W. Delaney and A. L. Chaffee, Fuel Processing Tech. Vol. 86 (2005), p.1435.
Google Scholar
[42]
A. Calvo, M. Joselevich and F. J. Williams, Micropor. Mesopor. Mater. Vol. 121 (2009), p.67.
Google Scholar
[43]
M. Luechinger, R. Prins and G. D. Pirngruber, Micropor. Mesopor. Mater. Vol. 85 (2005), p.111.
Google Scholar
[44]
Sujandi, E. A. Prasetyanto, S. C. Lee and S. E. Park, Micropor. Mesopor. Mater. Vol. 118 (2009), p.134.
Google Scholar
[45]
K. Z. Hossain and L. Mercier, Adv. Mater. Vol. 14 (2002), p.1053.
Google Scholar
[46]
D. J. Kim, J. S. Chung, W. S. Ahn, G. W. Kang and W. J. Cheong, Chem. Lett. Vol. 33 (2004), p.422.
Google Scholar
[47]
V. Rebbin, R. Schmidt and M. Froba, Angew. Chem. Int. Ed., Vol. 45 (2006), p.5210.
Google Scholar
[48]
G. R. Zhu, Q. H. Yang and C. Li, Chinese J. Chrom. Vol. 25 (2007), p.505.
Google Scholar
[49]
L. Zhang, J. Liu, J. Yang, Q. H. Yang and C. Li, Micropor. Mesopor. Mater. Vol. 109 (2008), p.172.
Google Scholar
[50]
A. S. M. Chong and X. S. Zhao, J. Phys. Chem. B, Vol. 107 (2003), p.650.
Google Scholar
[51]
M. C. Burleigh, M. A. Markowitz, S. Jayasundera, M. S. Spector, C. W. Thomas and B. P. Gaber, J. Phys. Chem. B Vol. 107 (2003), p.12628.
Google Scholar
[52]
J. Liu, Q. H. Yang, M. P. Kapoor, N. Setoyama, S. Inagaki, J. Yang and L. Zhang, J. Phys. Chem. B Vol. 109 (2005), p.12250.
Google Scholar
[53]
Q. H. Yang, Y. Li, L. Zhang, J. Yang, J. Liu and C. Li, J. Phys. Chem. B Vol. 108 (2004), p.7934.
Google Scholar
[54]
G. R. Zhu, Q. H. Yang, D. Jiang, J. Yang, L. Zhang Y. Li and C. Li, J. Chromatogr. A Vol. 1103 (2006), p.257.
Google Scholar
[55]
M. Etienne and A. Walcarius, Talanta Vol. 59 (2003), p.1173.
Google Scholar
[56]
E. Leontidis, Curr. Opinion Colloid Interf. Sci. Vol. 7 (2002), p.81.
Google Scholar
[57]
C. Yu, B. Tian, J. Fan, G. D. Stucky and D. Y. Zhao, Chem. Commun. (2001), p.2726.
Google Scholar
[58]
L. Zhang, Q. H. Yang, W. Zhang, Y. Li, J. Yang, D. Jiang, G. R. Zhu and C. Li, J. Mater. Chem. Vol. 15 (2005), p.2562.
Google Scholar
[59]
J. T. A. Jones, C. D. Wood, C. Dickinson and Y. Z. Khimyak, Chem. Mater. Vol. 20 (2008), p.3385.
Google Scholar
[60]
M. A. Wahab, W. Guo, W. J. Cho and C. S. Ha, J. Sol-Gel Sci. Technol. Vol. 27 (2003), p.333.
Google Scholar
[61]
D. Coutinho, C. R. Xiong and J. Kenneth, Micropor. Mesopor. Mater. Vol. 108 (2008), p.86.
Google Scholar
[62]
S. R. Zhai, I. Kim and C. S. Ha, J. Solid State Chem. Vol. 181 (2008), p.67.
Google Scholar
[63]
H. M. Kao, C. H. Liao and A. Palani, Micropor. Mesopor. Mater. Vol. 113 (2008), p.212.
Google Scholar
[64]
E. B. Cho and D. Kim, Micropor. Mesopor. Mater. Vol. 113 (2008), p.530.
Google Scholar
[65]
X. Wang, K. S. K. Lin, J. C. C. Chan and S. Cheng, J. Phys. Chem. B Vol. 109 (2005), p.1763.
Google Scholar
[66]
Kimata K, Iwaguchi K, Orishi S, Jinno K, Eksteen R, Hosoya K and Tanaka N, J. Chromatogr. Sci. Vol. 27 (1989), p.721.
Google Scholar