Twinning Stress in Fcc Metals from the Classical Nucleation Theory

Article Preview

Abstract:

Deformation twinning is widely observed in face-centered cubic (fcc) metals. The stress for activating twinning is an important issue to be solved. We presented an expression linking to twinning stress based on the total energy change associated with the formation of a twinning nucleus according to the classical nucleation theory. We assume there exist no energy fluctuations to overcome the nucleation barrier. The expression can predict the twinning stress for fcc metals, which is in excellent agreement with experimental results with simple form. Finally, we introduce a measure twinability to quantify the propensity of fcc metals to twin as opposed to cross-slip.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

247-251

Citation:

Online since:

January 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.H. Blewitt, R.R. Coltman and J.K. Redman: J. Appl. Phys. Vol. 28(1957), p.651.

Google Scholar

[2] H. Suzuki and C.S. Barrett: Acta Metall. Vol. 6(1958), p.156.

Google Scholar

[3] P. Haasen: Philos Mag. Vol. 3(1958), p.384.

Google Scholar

[4] G.F. Bolling and R.H. Richman: Acta Metall. Vol. 13(1965), p.709.

Google Scholar

[5] J.B. Cohen and J. Weertman: Acta Metall. Vol. 11(1963), p.996.

Google Scholar

[6] S. Mahajan and G.Y. Chin: Acta Metall. Vol. 21(1973), p.1353.

Google Scholar

[7] H. Fujita and T. Mori: Scr. Metall. Vol. 9(1975), p.631.

Google Scholar

[8] S. Muira, J.I. Takamura and N. Narita: Trans. J. Inst. Met. Suppl. Vol. 9(1968), p.555.

Google Scholar

[9] S. Kibey, J.B. Liu, D.D. Johnson and H. Sehitoglu: Acta Mater. Vol. 55(2007), p.6843.

Google Scholar

[10] N. Bernstein and E.B. Tadmor: Phys. Rev. B Vol. 69(2004), p.094116.

Google Scholar

[11] S. Ogata, J. Li and S. Yip: Phys. Rev. B Vol. 71(2005), p.224102.

Google Scholar

[12] S. Kibey, J.B. Liu, D.D. Johnson and H. Sehitoglu: Appl. Phys. Lett. Vol. 89(2006), p.191911.

Google Scholar

[13] J.W. Christian and S. Mahajan: Prog. Mater. Sci. Vol. 39(1995), p.1.

Google Scholar

[14] R.C. Pond and L.M. Garcia-Garcia: Int. Phys. Conf. Ser. Vol. 61(1981), p.495.

Google Scholar

[15] I.M. Robertson: Philos Mag. Vol. 54(1986), p.821.

Google Scholar

[16] M.A. Meyers, O. Vohringer and V.A. Lubrada: Acta Mater. Vol. 49(2001), p.4025.

Google Scholar

[17] J.P. Hirth and J. Lothe: Theory of dislocations(2ndEd. New York, Wiley 1982).

Google Scholar

[18] W. Puschl: Prog. Mater. Sci. Vol. 47(2002), p.415.

Google Scholar

[19] N. Bernstein and E.B. Tadmor: J. Mech. Phys. Solids. Vol. 52(2004), p.2507.

Google Scholar