An Iterative Algorithm on the Spectral Radius of a Kind of Centrosymmetric Matrix

Article Preview

Abstract:

This article bases on the reduction property of the centrosymmetric matrix. We analyze the method of computing the spectral radius of the inverse M-matrices, and present an iterative algorithm for the spectral radius of a kind of centrosymmetric matrices with special structure. We show that the computation cost will be reduced significantly by using this algorithm.Introduction and Preliminaries

You might also be interested in these eBooks

Info:

Periodical:

Pages:

108-112

Citation:

Online since:

January 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. Perron, Zur Theorie der Matrizen, Math. Ann., 64(1907) 248-263.

Google Scholar

[2] G. Frobenius, Uber Matrizen aus nicht negative Elementen, S.B. Press. Akad. Wiss., Berlin, 1912, pp.456-477.

Google Scholar

[3] W. Ledermann, Bounds for the Greatest latent root of a Positive Matrix, J. London Math. Soc., 25(1950) 265-268.

DOI: 10.1112/jlms/s1-25.4.265

Google Scholar

[4] A. Ostrowski, Bounds for the Greatest latent root of a Positive Matrix, J. London Math. Soc., 27(1952) 253-256.

DOI: 10.1112/jlms/s1-27.2.253

Google Scholar

[5] A. Brauer, The theorems of Ledermann and Ostrowski on positive matrices, Duke. Math.J., 24(1957) 265-274.

DOI: 10.1215/s0012-7094-57-02434-1

Google Scholar

[6] Minc H. Nonnegative Matrices, John Wiley and Sons, New York, (1988).

Google Scholar

[7] A.L. Andrew, Centrosymmetric matrices, SIAM Rev., 40(1998) 697-698.

Google Scholar

[8] I. Daubechies, Ten lectures on wavelet, CBS, 61, SIAM, Philadephia, (1992).

Google Scholar

[9] M. Haardt, J.A. Nossek, Simultaneous schur decomposition of several nonsymmetric matrices to achieve automatic pairing in multidimensional harmonic retrieval problems, IEEE Trans. Signal Processing, 46(1998) 161-169.

DOI: 10.1109/78.651206

Google Scholar

[10] W.M. Lawton, Necessary and sufficient conditions for constructing wavelet bases, J. Math. Phys., 32(1991) 57-61.

Google Scholar

[11] I.S. Pressman, Matrices with multiple symmetric properties: applications of centrohermitian and perhermition matrices, Linear Algebra Appl., 284(1998) 239-258.

DOI: 10.1016/s0024-3795(98)10144-1

Google Scholar

[12] R.A. Willoughby. The inverse M matrix problem, Linear Algebra Appl., 18(1977) 75-94.

Google Scholar

[13] Z.Y. Liu, Some properties of centrosymmetric matrices, Appl. Math. Comput., 141 (2002) 17-26.

Google Scholar

[14] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991, pp.487-515.

Google Scholar

[15] C.R. Johnson. Inverse M matrices, Linear Algebra Appl, 47(1982) 195-216.

Google Scholar

[16] C.D. Meyor, Uncoupling the Perron eigenvector problem, Linear Algebra Appl., 114/115(1989), 69-94.

DOI: 10.1016/0024-3795(89)90452-7

Google Scholar

[17] L.Z. Lu, Perron complement and Perron root, Linear Algebra Appl., 341(2000) 239-248.

DOI: 10.1016/s0024-3795(01)00378-0

Google Scholar

[18] C.S. Yang, C.X. Xu, Some properties involving generalized Perron complement of nonnegative and irreducible matrices, ACTA MATHEMATICAE APPLICATAE SINICA, 28(3)(2005) 435-440.

Google Scholar

[19] F.J. Duan, K.C. Zhang, An algorithm of diagonal transformation for Perron root of nonnegative irreducible matrices, Appl. Math. Comput. 175 (2006) 762-772.

DOI: 10.1016/j.amc.2005.07.055

Google Scholar