[1]
O. Perron, Zur Theorie der Matrizen, Math. Ann., 64(1907) 248-263.
Google Scholar
[2]
G. Frobenius, Uber Matrizen aus nicht negative Elementen, S.B. Press. Akad. Wiss., Berlin, 1912, pp.456-477.
Google Scholar
[3]
W. Ledermann, Bounds for the Greatest latent root of a Positive Matrix, J. London Math. Soc., 25(1950) 265-268.
DOI: 10.1112/jlms/s1-25.4.265
Google Scholar
[4]
A. Ostrowski, Bounds for the Greatest latent root of a Positive Matrix, J. London Math. Soc., 27(1952) 253-256.
DOI: 10.1112/jlms/s1-27.2.253
Google Scholar
[5]
A. Brauer, The theorems of Ledermann and Ostrowski on positive matrices, Duke. Math.J., 24(1957) 265-274.
DOI: 10.1215/s0012-7094-57-02434-1
Google Scholar
[6]
Minc H. Nonnegative Matrices, John Wiley and Sons, New York, (1988).
Google Scholar
[7]
A.L. Andrew, Centrosymmetric matrices, SIAM Rev., 40(1998) 697-698.
Google Scholar
[8]
I. Daubechies, Ten lectures on wavelet, CBS, 61, SIAM, Philadephia, (1992).
Google Scholar
[9]
M. Haardt, J.A. Nossek, Simultaneous schur decomposition of several nonsymmetric matrices to achieve automatic pairing in multidimensional harmonic retrieval problems, IEEE Trans. Signal Processing, 46(1998) 161-169.
DOI: 10.1109/78.651206
Google Scholar
[10]
W.M. Lawton, Necessary and sufficient conditions for constructing wavelet bases, J. Math. Phys., 32(1991) 57-61.
Google Scholar
[11]
I.S. Pressman, Matrices with multiple symmetric properties: applications of centrohermitian and perhermition matrices, Linear Algebra Appl., 284(1998) 239-258.
DOI: 10.1016/s0024-3795(98)10144-1
Google Scholar
[12]
R.A. Willoughby. The inverse M matrix problem, Linear Algebra Appl., 18(1977) 75-94.
Google Scholar
[13]
Z.Y. Liu, Some properties of centrosymmetric matrices, Appl. Math. Comput., 141 (2002) 17-26.
Google Scholar
[14]
R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991, pp.487-515.
Google Scholar
[15]
C.R. Johnson. Inverse M matrices, Linear Algebra Appl, 47(1982) 195-216.
Google Scholar
[16]
C.D. Meyor, Uncoupling the Perron eigenvector problem, Linear Algebra Appl., 114/115(1989), 69-94.
DOI: 10.1016/0024-3795(89)90452-7
Google Scholar
[17]
L.Z. Lu, Perron complement and Perron root, Linear Algebra Appl., 341(2000) 239-248.
DOI: 10.1016/s0024-3795(01)00378-0
Google Scholar
[18]
C.S. Yang, C.X. Xu, Some properties involving generalized Perron complement of nonnegative and irreducible matrices, ACTA MATHEMATICAE APPLICATAE SINICA, 28(3)(2005) 435-440.
Google Scholar
[19]
F.J. Duan, K.C. Zhang, An algorithm of diagonal transformation for Perron root of nonnegative irreducible matrices, Appl. Math. Comput. 175 (2006) 762-772.
DOI: 10.1016/j.amc.2005.07.055
Google Scholar