Structure, Electrical and Optical Properties of the Polar ZnO(0001) Surfaces

Article Preview

Abstract:

Based on the density functional theory, using the first-principles calculations method, the geometrical structure, electronic structure and optical properties of the ZnO(0001) surface were investigated. The calculated results show that a great change appears in the structure after the surface relaxation. The new energy levels were found in the band structure. The conductivity of the ZnO (0001) surface becomes stronger, showing the electrical properties of metal. On the other hand, imaginary part of the dielectric function of the ZnO(0001) surface also changes certainly. A new peak is observed in the low energy region. The results provide a theoretical basis for photoelectric device manufacturing and further development on the ZnO surface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-29

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. C. Look, B. Claflin, Y. I. Alivov, and S. J. Park, Phys. Stat. Sol. (a) 201, 2203-2212(2004).

DOI: 10.1002/pssa.200404803

Google Scholar

[2] Tang Z K, Wang G K L, Yu P, et al, Appl. Phys. Lett 72, 3270-3275(1998).

Google Scholar

[3] Hideki Tnak, Kazuhiko Ihara, Toshihiro Miyata, et al, J. Vac. Sci. Technol. A 22, 1757(2004).

Google Scholar

[4] Ohta H, Kawamura K, Oriat M, et al, Appl. Phys. Lett 77, 475(2000).

Google Scholar

[5] HeoY W, Varadarjan V, Kaufman M, Ren F, et al. Appl. Phys. Lett 81, 3046(2002).

Google Scholar

[6] Z.H. Xiong, L.L. Chen, C.D. Zheng, L. Luo, Q.X. Wan, Scripta Mater. 63, 1069(2011).

Google Scholar

[7] L.L. Chen, Z.H. Xiong, Q.X. Wan, D.M. Li, Opt. Mater. 32, 1216(2010).

Google Scholar

[8] Zhihua Xiong, Lanli Chen, Qixin Wan, Dongmei Li, Proc. SPIE 7658, 765808 (2010).

Google Scholar

[9] J. Hu, W.P. Guo, X.R. Shi, B.R. Li, J.G. Wang, J. Phys. Chem. C 113, 7227 (2009).

Google Scholar

[10] V. Ney, S. Ye, et al, J. Appl. Phys. 104, 083904(2008).

Google Scholar

[11] P. Lazcano, M. Batzill, U. Diebold, P. Haberle, Phys. Rev. B 77, 035435(2008).

Google Scholar

[12] Christian M Schlepütz et al, J. Phys.: Condens. Matter 24, 095007 (2012).

Google Scholar

[13] Brillson, L. J., Dong, Y, et al, Phys. Status Solidi C. 10, 1002(2012).

Google Scholar

[14] Zhi Yang, Shi-Jie Xiong, Surface Science 605, 40-45(2011).

Google Scholar

[15] Li Qi, Fan Guang-Han, Xiong Wei- Ping, Zhang Yong, Acta. Phys. Sin. 59, 06(2010).

Google Scholar

[16] Zi Nan Zhang et al, Key Engineering Materials, 512-515, 1253(2012).

Google Scholar

[17] J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244(1992).

Google Scholar

[18] P. E. Blöchl, Phys. Rev. B 50, 17953–17979 (1994).

Google Scholar

[19] G. Kresse, and J. Hafner, Phys. Rev. B 47, 558-561(1993).

Google Scholar

[20] G. Kresse, and J. Furthermuller, Phys. Rev. B 54, 11169-11186, (1996).

Google Scholar

[21] X.Q. Dai, H.J. Yan, J.L. Wang, et al, J. Phys: Condens. Matter 20, 095002(2008).

Google Scholar

[22] S. J. Pearton, D. P. Norton, K. et al, J. Vac. Sci. Technol. B 22, 932(2004).

Google Scholar

[23] Anisimov V I, Aryasetiawan F, Lichtenstein A I, J. Phy: Condens. Matter 9, 767(1997).

Google Scholar

[24] B. Meyer, D. Marx, Phys. Rev. B 67, 035403(2003).

Google Scholar

[25] Yong Xu, Oliver T. Hofmann, Rinke Patrick, et al, Bulletin of the American Physical Society 57, 1(2012).

Google Scholar