[1]
O. Aschehoug, M. Perino: Integrating Environmentally Responsive Building Elements in Buildings, International Energy Agency – Energy Savings in Buildings and Community Systems Programme – Annex 44 – Expert Guide Pt. 2 (2009).
Google Scholar
[2]
D. Grünkranz: Towards a Phenomenology of Responsive Architecture – Intelligent Technologies and Their Influence on the Experience of Space, University of Applied Arts (2010).
Google Scholar
[3]
M.C. Mozer, M. Coen (Ed. ): The neural network house - An environment that adapts to its inhabitants. In: Proceedings of the American Association for Artificial Intelligence Spring Symposium on Intelligent Environments, pp.110-114, Menlo, Park, CA: AAAI Press (1998).
Google Scholar
[4]
T. d'Estrée Sterk, P. Ayres (Ed. ): Persistent Modeling - Extending the Role of Architectural Representation, Routledge Press (2012).
Google Scholar
[5]
S. -Y. Chen, S. -F. Chang, M.A. Al-Qutayri (Ed. ): Applying Agent-based Theory to Adaptive Architectural Environment – Example of Smart Skins, In: Smart Home Systems, InTech (2010).
DOI: 10.5772/8409
Google Scholar
[6]
M. Schumacher, O. Schäffer, M. -M. Vogt: Move. Architecture in Move - Dynamic components and parts, Birkhäuser GmbH (2010).
Google Scholar
[7]
D. Vucic: Methods for the Production and Processing of Bifurcated Profiles. Shaker Verlag, Aachen (2010).
Google Scholar
[8]
J. Herbert, S. Schäfer: Use potential in Building Construction for High-Order Integral Sheet Metal Constructions. Bauingenieur 83 (2008), pp.410-418.
Google Scholar
[9]
S. Schäfer, S. Abedini: Property Improvement of Construction Products by New Production Technologies of the CRC 666. In: Conference proceedings 4. Intermediate Colloquium CRC 666. Meisenbach Verlag GmbH, Bamberg (2012).
Google Scholar
[10]
M. Jöckel: Basics of the Bifurcated Profiling of Sheet Metal Planks. Shaker Verlag, Aachen (2005).
Google Scholar
[11]
S. Schäfer, M. Petzold, F. Wellnitz: Application of Ribbed Sheet Metal Shells in the Construction Industry. In: Darmstadt Concrete (24). Institut für Massivbau der TU Darmstadt, Darmstadt (2009).
Google Scholar
[12]
T. Bohn, E. Bruder, C. Müller: Formation of ultrafine-grained microstructure in HSLA steel profiles by linear flow splitting, in: Journal of Material Sciences 43, (2008) pp.7307-7312.
DOI: 10.1007/s10853-008-2682-2
Google Scholar
[13]
C. Müller, T. Bohn, E. Bruder, P. Groche: UFG-Microstructures by Linear Flow Splitting. In: Mater. Sci. Forum 584-586 (2008).
DOI: 10.4028/www.scientific.net/msf.584-586.68
Google Scholar
[14]
V. Kaune, C. Müller: Formation of UFG-surface layers on a HSLA steel by a continuous Surface-SPD-Process. In: Mater. Sci. Eng. A 535 (2012).
DOI: 10.1016/j.msea.2011.12.012
Google Scholar
[15]
S. Schäfer, S. Abedini, P. Groche, F. Bäcker, C. Ludwig, E. Abele, B. Jalizi, C. Müller, V. Kaune: Connection Techniques through the Technology of the CRC 666. In: Bauingenieur. Düsseldorf (2012).
Google Scholar