Nano-Illumination Based on Field Enhancement inside a Subwavelength Metallic Structure

Article Preview

Abstract:

A subwavelength metallic slit is proposed to generate super-strong nano-illumination. We use the finite-difference time-domain method to present that character. By changing a subwavelength slit into several slits and fixing the total volume of the air slits, we found that the energy was enhanced in the nano-slits. The more nano-slits have the better effective of enhancement. The slits also make the output light beams focusing. Because of the successive enhancement processes, the light from the nano-slit could become hundred times stronger than the incident light and accordingly could have great potentials for applications in optical data storage, super-resolution imaging, lithography, photonics, and other applications that need nano-illumination.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-41

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. H. Ritchie, Phys. Rev. 106, 874 (1957).

Google Scholar

[2] H. Rather, Surface Plasmons on Smooth and Rough Surfaces and Gratings, Springer Tracts in Modern Physics Vol. III (Springer, Heidelberg, 1988), p.1–39.

DOI: 10.1007/bfb0048319

Google Scholar

[3] Anatoly V. Zayats, Igori Smolyaninov, and Alexei A. Maradudin, Phys. Rep. 408, 131 (2005).

Google Scholar

[4] T. W. Ebbesent, H. J. Lezec, H. Fhaemi, T. Thio, and P. A. Wolff, Nature (London) 391, 667 (1998).

Google Scholar

[5] W. L. Barnes, W. A. Murray, J. Dintinger, E. Dwaus, and T. W. Ebbesen, Nature (London) 424, 824 (2003).

Google Scholar

[6] C. Sönnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plesson, and J. Feldmann, Appl. Phys. Lett. 76, 140 (2000).

DOI: 10.1063/1.125682

Google Scholar

[7] A. P. Hibbins and J. Roy Sambles, Appl. Phys. Lett. 81, 4661 (2002).

Google Scholar

[8] Hugo F. Schouten, Taco D. Visser, and Daan Lenstra, Phys. Rev. E 67, 036608 (2003).

Google Scholar

[9] Y. Takakura, Phys. Rev. Lett. 86, 5601 (2001).

Google Scholar

[10] Fuzi Yang and J. R. Sambles, Phys. Rev. Lett. 89, 063901 (2002).

Google Scholar

[11] J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, and J. R. Sambles, Phys. Rev. Lett. 92, 147401 (2004).

Google Scholar

[12] Cheng Liu, Nanguang Chen, and Colin Sheppard, Appl. Phys. Lett. 90, 011501 (2007).

Google Scholar

[13] F. Keilmann, K. W. Kussmaul, and Z. Sentirmay, Appl. Phys. B: Photophys. Laser Chem. 47, 169 (1988).

Google Scholar

[14] A. Bouhelier, Th. Huser, H. Tamaru, H. -J. Guntherodt, D. W. Pohl, F. L. Baisa, and D. Van Labeke, Phys. Rev. B 63, 155404 (2001).

Google Scholar

[15] H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Ausenegg, Appl. Phys. Lett. 81, 1762 (2002).

Google Scholar

[16] H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Ausenegg, Opt. Lett. 29, 1408(2004).

Google Scholar

[17] A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Holenau, B. Steinberger, F. R. Aussengg, A. Leitner, and J. R. Krenn, Appl. Phys. Lett. 86, 074104 (2005).

DOI: 10.1063/1.1925867

Google Scholar

[18] Z. W. Liu, Q. H. Wei, and X. Zhang, Nano Lett. 5, 957 (2005).

Google Scholar

[19] S. A. Maier, M. D. Fredman, P. E. Barclay, and O. Painter, Appl. Phys. Lett. 86, 071103 (2005).

Google Scholar

[20] Ling Lin, Xiao M. Goh, Liam P. McGuinness, and Ann Roberts, Nano. Lett. 1009712 (2010).

Google Scholar

[21] Fenghuan Hao, Rui Wang and Jia Wang, Plasmonics 5, 45 (2010).

Google Scholar

[22] K. S. Yee, IEEE Trans. Antennas Propag. 14, 302 (1966).

Google Scholar

[23] T. Okamoto, in Near-field Optics and Surface Plasmon Polariton, edited by S. Kawata, M. Ohtsu, and M. Irie (Springer, New York, 2001), Chap. 6, p.97.

Google Scholar