Computational Study on Triphenylamine-Based Dyes Containing Benzimidazole Units for Dye-Sensitized Solar Cells

Abstract:

Article Preview

Three novel dyes (D1, D2 and D3) containing triphenylamine (TPA) unit as core and bearing different benzimidazole units as secondary electron-donors are designed. The geometries, electronic structures, and electronic absorption spectra of these dyes are studied by DFT and TD-DFT. The optimized results indicate that these dyes are all non-coplanar, which can help to inhibit the close intermolecular π-π stacking aggregation effectively. The lowest unoccupied molecular orbital (LUMO) energy levels of the dyes are higher than the conduction band edge of the TiO2, which ensures a high efficiency of electron transfer from these dyes to TiO2 electrode. As the highest occupied molecular orbital (HOMO) energy levels of these dyes are lower than those of I-/I-3, these molecules that lose electrons could be restored by getting electrons from electrolyte. The absorption spectra of these dyes are simulated, and the calculated results indicate that D3 can absorb more photons than those of D1, D2 and TPAR in the region from 250 to 580 nm, which should have the best performance of photo-to-electric conversion efficiency.

Info:

Periodical:

Edited by:

David M. Batisdas and Y.Q. Chang

Pages:

110-114

Citation:

Z. Q. Wan et al., "Computational Study on Triphenylamine-Based Dyes Containing Benzimidazole Units for Dye-Sensitized Solar Cells", Advanced Materials Research, Vol. 668, pp. 110-114, 2013

Online since:

March 2013

Export:

Price:

$38.00

[1] R. Ma, P. Guo, L. Yang, L. Guo, X. Zhang, M. K. Nazeeruddin and M. Grätzel: J. Phys. Chem. A Vol. 114 (2010), p. (1973).

[2] C. R. Zhang, Y. Z. Wu, S. H. Chen and H. S. Chen: Acta Phys. Chim. Sin. Vol. 25 (2009), p.53.

[3] E. J. Baerends, G. Ricciardi, A. Rosa, and S. J. A. van Gisbergen: Coord. Chem. Rev. Vol. 230 (2002), p.5.

[4] W. S. Zhan, S. Pan, Q. Wang, H. Li and Y. Zhang: Acta Phys. Chim. Sin. Vol. 28 (2012), p.78.

[5] J. Linnanto and J. Korppi-Tommola: Phys. Chem. Chem. Phys. Vol. 8 (2006), p.663.

[6] W. Li, Y. Wu, X. Li, Y. Xie and W. Zhu: Energy Environ. Sci. Vol. 4 (2011), p.1830.

[7] Y. J. Chang and T. J. J. Chow: Mater. Chem. Vol. 21 (2011), p.9523.

[8] J. Xu, L. Wang, G. J. Liang, Z. K. Bai, L. X. Wang, W. L. Xu and X. L. Shen: Spectrochim. Acta A Vol. 78 (2011), p.287.

[9] Z. Wan, C. Jia, J. Zhang, Y. Duan, Y. Lin and Y. Shi: J. Power Sources Vol. 199 (2012), p.426.

[10] W. Xu, B. Peng, J. Chen, M. Liang and F. S. Cai: J. Phys. Chem. C Vol. 112 (2008), p.874.

[11] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, et al: Gaussian 03, Revision C. 02: Wallingford, CT; (2004).

[12] A. Monari, X. Assfeld, M. Beley and P. C. Gros: J. Phys. Chem. A Vol. 115 (2011), p.3596.

[13] P. Guo, R. Ma, H. Cui, X. Zhang, M. K. Nazeeruddin and M. Gratzel: J. Phys. Chem. A Vol. 113 (2009), p.10119.

[14] P. Qin, X. Yang, R. Chen, L. Sun, T. Marinado, T. Edvinsson, G. Boschloo and A. Hagfeldt: J. Phys. Chem. C Vol. 111 (2007), p.1853.

[15] J. B. Asbury, Y. Q. Wang, E. Hao, H. Ghosh and T. Lian: Res. Chem. Intermed. Vol. 27 (2001), p.393.

[16] D. Cahen, G. Hodes, M. Grätzel, J. F. Guillermoles and I. J. Riess: Phys. Chem. B Vol. 104 (2000), p. (2053).

[17] S. J. Lind, K. C. Gordon, S. Gambhir and D. L. Officer: Phys. Chem. Chem. Phys. Vol. 11 (2009), p.5598.

[18] R. Sanchez-de-Armas, M. A. San Miguel, J. Oviedo and J. F. Sanz: Phys. Chem. Chem. Phys. Vol. 14 (2012), p.225.