Computational Study on Triphenylamine-Based Dyes Containing Benzimidazole Units for Dye-Sensitized Solar Cells

Article Preview

Abstract:

Three novel dyes (D1, D2 and D3) containing triphenylamine (TPA) unit as core and bearing different benzimidazole units as secondary electron-donors are designed. The geometries, electronic structures, and electronic absorption spectra of these dyes are studied by DFT and TD-DFT. The optimized results indicate that these dyes are all non-coplanar, which can help to inhibit the close intermolecular π-π stacking aggregation effectively. The lowest unoccupied molecular orbital (LUMO) energy levels of the dyes are higher than the conduction band edge of the TiO2, which ensures a high efficiency of electron transfer from these dyes to TiO2 electrode. As the highest occupied molecular orbital (HOMO) energy levels of these dyes are lower than those of I-/I-3, these molecules that lose electrons could be restored by getting electrons from electrolyte. The absorption spectra of these dyes are simulated, and the calculated results indicate that D3 can absorb more photons than those of D1, D2 and TPAR in the region from 250 to 580 nm, which should have the best performance of photo-to-electric conversion efficiency.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

110-114

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Ma, P. Guo, L. Yang, L. Guo, X. Zhang, M. K. Nazeeruddin and M. Grätzel: J. Phys. Chem. A Vol. 114 (2010), p. (1973).

Google Scholar

[2] C. R. Zhang, Y. Z. Wu, S. H. Chen and H. S. Chen: Acta Phys. Chim. Sin. Vol. 25 (2009), p.53.

Google Scholar

[3] E. J. Baerends, G. Ricciardi, A. Rosa, and S. J. A. van Gisbergen: Coord. Chem. Rev. Vol. 230 (2002), p.5.

Google Scholar

[4] W. S. Zhan, S. Pan, Q. Wang, H. Li and Y. Zhang: Acta Phys. Chim. Sin. Vol. 28 (2012), p.78.

Google Scholar

[5] J. Linnanto and J. Korppi-Tommola: Phys. Chem. Chem. Phys. Vol. 8 (2006), p.663.

Google Scholar

[6] W. Li, Y. Wu, X. Li, Y. Xie and W. Zhu: Energy Environ. Sci. Vol. 4 (2011), p.1830.

Google Scholar

[7] Y. J. Chang and T. J. J. Chow: Mater. Chem. Vol. 21 (2011), p.9523.

Google Scholar

[8] J. Xu, L. Wang, G. J. Liang, Z. K. Bai, L. X. Wang, W. L. Xu and X. L. Shen: Spectrochim. Acta A Vol. 78 (2011), p.287.

Google Scholar

[9] Z. Wan, C. Jia, J. Zhang, Y. Duan, Y. Lin and Y. Shi: J. Power Sources Vol. 199 (2012), p.426.

Google Scholar

[10] W. Xu, B. Peng, J. Chen, M. Liang and F. S. Cai: J. Phys. Chem. C Vol. 112 (2008), p.874.

Google Scholar

[11] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, et al: Gaussian 03, Revision C. 02: Wallingford, CT; (2004).

Google Scholar

[12] A. Monari, X. Assfeld, M. Beley and P. C. Gros: J. Phys. Chem. A Vol. 115 (2011), p.3596.

Google Scholar

[13] P. Guo, R. Ma, H. Cui, X. Zhang, M. K. Nazeeruddin and M. Gratzel: J. Phys. Chem. A Vol. 113 (2009), p.10119.

Google Scholar

[14] P. Qin, X. Yang, R. Chen, L. Sun, T. Marinado, T. Edvinsson, G. Boschloo and A. Hagfeldt: J. Phys. Chem. C Vol. 111 (2007), p.1853.

Google Scholar

[15] J. B. Asbury, Y. Q. Wang, E. Hao, H. Ghosh and T. Lian: Res. Chem. Intermed. Vol. 27 (2001), p.393.

Google Scholar

[16] D. Cahen, G. Hodes, M. Grätzel, J. F. Guillermoles and I. J. Riess: Phys. Chem. B Vol. 104 (2000), p. (2053).

Google Scholar

[17] S. J. Lind, K. C. Gordon, S. Gambhir and D. L. Officer: Phys. Chem. Chem. Phys. Vol. 11 (2009), p.5598.

Google Scholar

[18] R. Sanchez-de-Armas, M. A. San Miguel, J. Oviedo and J. F. Sanz: Phys. Chem. Chem. Phys. Vol. 14 (2012), p.225.

Google Scholar